Skip to content

vllm.config.utils

Utility functions for vLLM config dataclasses.

Range

A range of numbers. Inclusive of start, inclusive of end.

Source code in vllm/config/utils.py
@dataclass
class Range:
    """
    A range of numbers.
    Inclusive of start, inclusive of end.
    """

    start: int
    end: int

    def is_single_size(self) -> bool:
        return self.start == self.end

    def __contains__(self, size: int) -> bool:
        # Inclusive of start, inclusive of end
        return self.start <= size <= self.end

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, Range):
            return False
        return self.start == other.start and self.end == other.end

    def __hash__(self) -> int:
        return hash((self.start, self.end))

    def __str__(self) -> str:
        return f"({self.start}, {self.end})"

    def __repr__(self) -> str:
        return self.__str__()

config

config(
    cls: type[ConfigT] | None = None,
    *,
    config: ConfigDict | None = None,
    **kwargs: Any,
) -> (
    type[ConfigT] | Callable[[type[ConfigT]], type[ConfigT]]
)

Decorator to create a pydantic dataclass with default config. The default config for the dataclass forbids extra fields.

All config classes in vLLM should use this decorator.

Parameters:

Name Type Description Default
cls type[ConfigT] | None

The class to decorate

None
config ConfigDict | None

The pydantic ConfigDict to use. If provided, it will be merged with the default config.

None
**kwargs Any

Additional arguments to pass to pydantic.dataclass.

{}
Source code in vllm/config/utils.py
@dataclass_transform(field_specifiers=(PydanticField,))
def config(
    cls: type[ConfigT] | None = None,
    *,
    config: ConfigDict | None = None,
    **kwargs: Any,
) -> type[ConfigT] | Callable[[type[ConfigT]], type[ConfigT]]:
    """Decorator to create a pydantic dataclass with default config. The default config
    for the dataclass forbids extra fields.

    All config classes in vLLM should use this decorator.

    Args:
        cls: The class to decorate
        config: The pydantic ConfigDict to use. If provided, it will be merged with
            the default config.
        **kwargs: Additional arguments to pass to pydantic.dataclass."""
    # Extra fields are forbidden by default
    merged_config = ConfigDict(extra="forbid")
    if config is not None:
        merged_config.update(config)

    def decorator(cls):
        return dataclass(cls, config=merged_config, **kwargs)

    # Called with arguments: @config(config=...)
    if cls is None:
        return decorator
    # Called without arguments: @config
    return decorator(cls)

get_attr_docs

get_attr_docs(cls: type[Any]) -> dict[str, str]

Get any docstrings placed after attribute assignments in a class body.

https://davidism.com/mit-license/

Source code in vllm/config/utils.py
def get_attr_docs(cls: type[Any]) -> dict[str, str]:
    """
    Get any docstrings placed after attribute assignments in a class body.

    https://davidism.com/mit-license/
    """

    cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]

    if not isinstance(cls_node, ast.ClassDef):
        raise TypeError("Given object was not a class.")

    out = {}

    # Consider each pair of nodes.
    for a, b in pairwise(cls_node.body):
        # Must be an assignment then a constant string.
        if (
            not isinstance(a, (ast.Assign, ast.AnnAssign))
            or not isinstance(b, ast.Expr)
            or not isinstance(b.value, ast.Constant)
            or not isinstance(b.value.value, str)
        ):
            continue

        doc = inspect.cleandoc(b.value.value)

        # An assignment can have multiple targets (a = b = v), but an
        # annotated assignment only has one target.
        targets = a.targets if isinstance(a, ast.Assign) else [a.target]

        for target in targets:
            # Must be assigning to a plain name.
            if not isinstance(target, ast.Name):
                continue

            out[target.id] = doc

    return out

get_field

get_field(cls: ConfigType, name: str) -> Any

Get the default factory field of a dataclass by name. Used for getting default factory fields in EngineArgs.

Source code in vllm/config/utils.py
def get_field(cls: ConfigType, name: str) -> Any:
    """Get the default factory field of a dataclass by name. Used for getting
    default factory fields in `EngineArgs`."""
    if not is_dataclass(cls):
        raise TypeError("The given class is not a dataclass.")
    try:
        named_field = next(f for f in fields(cls) if f.name == name)
    except StopIteration as e:
        raise ValueError(f"Field '{name}' not found in {cls.__name__}.") from e

    # The arguments to copy to the new field
    default = named_field.default
    default_factory = named_field.default_factory
    init = named_field.init

    # Handle pydantic.Field
    if isinstance(default, FieldInfo):
        if default.init is not None:
            init = default.init
        if default.default_factory is not None:
            default_factory = cast(Callable[[], Any], default.default_factory)
            default = MISSING
        else:
            default = default.default

    if default is MISSING and default_factory is MISSING:
        logger.warning_once(
            "%s.%s has no default or default factory.", cls.__name__, name
        )
    return field(default=default, default_factory=default_factory, init=init)

get_from_deprecated_env_if_set

get_from_deprecated_env_if_set(
    env_name: str,
    removal_version: str,
    field_name: str | None = None,
) -> str | None

Get value from deprecated environment variable with warning.

Parameters:

Name Type Description Default
env_name str

Name of the deprecated environment variable

required
removal_version str

Version when it will be removed

required
field_name str | None

Name of the field to suggest as alternative

None

Returns:

Type Description
str | None

The environment variable value if set, None otherwise

Source code in vllm/config/utils.py
def get_from_deprecated_env_if_set(
    env_name: str,
    removal_version: str,
    field_name: str | None = None,
) -> str | None:
    """
    Get value from deprecated environment variable with warning.

    Args:
        env_name: Name of the deprecated environment variable
        removal_version: Version when it will be removed
        field_name: Name of the field to suggest as alternative

    Returns:
        The environment variable value if set, None otherwise
    """
    if envs.is_set(env_name):
        value = os.environ.get(env_name)
        alt_msg = f" Please use {field_name} instead." if field_name else ""
        logger.warning_once(
            "Using %s environment variable is deprecated and will be removed in %s.%s",
            env_name,
            removal_version,
            alt_msg,
        )
        return value
    return None

get_hash_factors

get_hash_factors(
    config: ConfigT, ignored_factors: set[str]
) -> dict[str, object]

Gets the factors used for hashing a config class. - Includes all dataclass fields not in ignored_factors. - Errors on non-normalizable values.

Source code in vllm/config/utils.py
def get_hash_factors(config: ConfigT, ignored_factors: set[str]) -> dict[str, object]:
    """Gets the factors used for hashing a config class.
    - Includes all dataclass fields not in `ignored_factors`.
    - Errors on non-normalizable values.
    """
    factors: dict[str, object] = {}
    for dc_field in fields(config):
        factor = dc_field.name
        if factor in ignored_factors:
            continue
        value = getattr(config, factor, None)
        try:
            factors[factor] = normalize_value(value)
        except TypeError as e:
            raise TypeError(
                f"get_hash_factors: unsupported type for key '{factor}' "
                f"({type(value).__name__})"
            ) from e
    return factors

getattr_iter

getattr_iter(
    object: object,
    names: Sequence[str],
    default: Any | None = None,
    default_factory: Callable[[], Any] | None = None,
    warn: bool = False,
) -> Any

A helper function that retrieves an attribute from an object which may have multiple possible names. This is useful when fetching attributes from arbitrary transformers.PretrainedConfig instances.

In the case where the first name in names is the preferred name, and any other names are deprecated aliases, setting warn=True will log a warning when a deprecated name is used.

Source code in vllm/config/utils.py
def getattr_iter(
    object: object,
    names: Sequence[str],
    default: Any | None = None,
    default_factory: Callable[[], Any] | None = None,
    warn: bool = False,
) -> Any:
    """
    A helper function that retrieves an attribute from an object which may
    have multiple possible names. This is useful when fetching attributes from
    arbitrary `transformers.PretrainedConfig` instances.

    In the case where the first name in `names` is the preferred name, and
    any other names are deprecated aliases, setting `warn=True` will log a
    warning when a deprecated name is used.
    """
    for i, name in enumerate(names):
        if hasattr(object, name):
            if warn and i > 0:
                logger.warning_once(
                    "%s contains a deprecated attribute name '%s'. "
                    "Please use the preferred attribute name '%s' instead.",
                    type(object).__name__,
                    name,
                    names[0],
                )
            return getattr(object, name)
    return default_factory() if default_factory is not None else default

hash_factors

hash_factors(items: dict[str, object]) -> str

Return a SHA-256 hex digest of the canonical items structure.

Source code in vllm/config/utils.py
def hash_factors(items: dict[str, object]) -> str:
    """Return a SHA-256 hex digest of the canonical items structure."""
    return hashlib.sha256(json.dumps(items, sort_keys=True).encode()).hexdigest()

normalize_value

normalize_value(x)

Return a stable, JSON-serializable canonical form for hashing. Order: primitives, special types (Enum, callable, torch.dtype, Path), then generic containers (Mapping/Set/Sequence) with recursion.

Source code in vllm/config/utils.py
def normalize_value(x):
    """Return a stable, JSON-serializable canonical form for hashing.
    Order: primitives, special types (Enum, callable, torch.dtype, Path), then
    generic containers (Mapping/Set/Sequence) with recursion.
    """
    # Fast path
    if x is None or isinstance(x, (bool, int, float, str)):
        return x

    # Enums: tag with FQN to avoid primitive collisions.
    # Ex: Enum(1) vs int(1) -> ("module.QualName", value).
    if isinstance(x, enum.Enum):
        enum_type = f"{x.__class__.__module__}.{x.__class__.__qualname__}"
        return (enum_type, normalize_value(x.value))

    # Classes (types) are accepted and canonicalized by their fully-qualified
    # name (module.qualname) for a stable identifier.
    # Instances are only accepted if they expose uuid(); otherwise they are
    # rejected to avoid under-hashing object state.

    # Callables: accept classes only; reject funcs/lambdas/methods.
    # Used by LogitsProcessor types and ModelConfig.hf_overrides.
    if isinstance(x, type):
        module = getattr(x, "__module__", "")
        qual = getattr(x, "__qualname__", getattr(x, "__name__", ""))
        return ".".join([p for p in (module, qual) if p]) or repr(x)

    # Prefer stable uuid identifiers for objects that provide them, even if
    # they are callable instances (e.g., InductorPass wrappers).
    if hasattr(x, "uuid") and callable(getattr(x, "uuid", None)):
        return x.uuid()

    if callable(x):
        raise TypeError("normalize_value: function or callable instance unsupported")

    # Torch dtype: stringify (torch.float64 -> "torch.float64").
    # We rely on the string form here; dtype-bearing fields that need additional
    # disambiguation should encode that at the config layer.
    if isinstance(x, torch.dtype):
        return str(x)

    # Bytes
    if isinstance(x, (bytes, bytearray)):
        return x.hex()

    # Paths (canonicalize)
    if isinstance(x, pathlib.Path):
        try:
            return str(x.expanduser().resolve())
        except Exception:
            return str(x)

    # Dataclasses: represent as (FQN, sorted(field,value) tuple) for stability.
    if is_dataclass(x):
        type_fqn = f"{x.__class__.__module__}.{x.__class__.__qualname__}"
        items = tuple(
            (f.name, normalize_value(getattr(x, f.name)))
            for f in sorted(fields(x), key=lambda f: f.name)
        )
        return (type_fqn, items)

    # Containers (generic)
    if isinstance(x, Mapping):
        return tuple(sorted((str(k), normalize_value(v)) for k, v in x.items()))
    if isinstance(x, Set):
        return tuple(sorted(repr(normalize_value(v)) for v in x))
    if isinstance(x, Sequence) and not isinstance(x, (str, bytes, bytearray)):
        return tuple(normalize_value(v) for v in x)

    # PretrainedConfig
    if hasattr(x, "to_json_string") and callable(x.to_json_string):
        return x.to_json_string()

    # Unsupported type: e.g., modules, generators, open files, or objects
    # without a stable JSON/UUID representation. Hard-error to avoid
    # under-hashing.
    # If you hit this, either reshape your config to use supported primitives
    # and containers, or extend normalize_value to provide a stable encoding
    # (e.g., via uuid() or to_json_string()) for this type.
    raise TypeError(
        f"normalize_value: unsupported type '{type(x).__name__}'. "
        "Ensure config values use supported primitives/containers or add a "
        "stable representation for this type."
    )

replace

replace(
    dataclass_instance: ConfigT, /, **kwargs
) -> ConfigT

Like dataclasses.replace, but compatible with Pydantic dataclasses which use pydantic.fields.Field instead of dataclasses.field

Source code in vllm/config/utils.py
def replace(dataclass_instance: ConfigT, /, **kwargs) -> ConfigT:
    """Like [`dataclasses.replace`](https://docs.python.org/3/library/dataclasses.html#dataclasses.replace),
    but compatible with Pydantic dataclasses which use `pydantic.fields.Field` instead
    of `dataclasses.field`"""
    cls = type(dataclass_instance)
    dataclass_dict = dataclass_instance.__dict__
    dataclass_dict = {k: v for k, v in dataclass_dict.items() if is_init_field(cls, k)}
    dataclass_dict.update(kwargs)
    return cls(**dataclass_dict)

set_from_deprecated_env_if_set

set_from_deprecated_env_if_set(
    config: ConfigT,
    env_name: str,
    removal_version: str,
    field_name: str,
    to_bool: bool = False,
    to_int: bool = False,
) -> None

Set object field from deprecated environment variable with warning.

Parameters:

Name Type Description Default
config ConfigT

Config object to set the field on

required
env_name str

Name of the deprecated environment variable

required
removal_version str

Version when the env var will be removed

required
field_name str

Name of the field to set

required
to_bool bool

Whether to convert the environment variable value to boolean

False
to_int bool

Whether to convert the environment variable value to integer

False

Returns: None

Source code in vllm/config/utils.py
def set_from_deprecated_env_if_set(
    config: ConfigT,
    env_name: str,
    removal_version: str,
    field_name: str,
    to_bool: bool = False,
    to_int: bool = False,
) -> None:
    """
    Set object field from deprecated environment variable with warning.

    Args:
        config: Config object to set the field on
        env_name: Name of the deprecated environment variable
        removal_version: Version when the env var will be removed
        field_name: Name of the field to set
        to_bool: Whether to convert the environment variable value to boolean
        to_int: Whether to convert the environment variable value to integer
    Returns:
        None
    """
    if to_bool and to_int:
        raise ValueError("Cannot convert to both boolean and integer.")

    env_value = get_from_deprecated_env_if_set(env_name, removal_version, field_name)
    if env_value is not None:
        field_value: str | bool | int = env_value
        if to_bool:
            field_value = env_value.lower() in ("1", "true")
        elif to_int:
            field_value = int(env_value)
        setattr(config, field_name, field_value)