class ChatCompletionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: list[ChatCompletionMessageParam]
model: str | None = None
frequency_penalty: float | None = 0.0
logit_bias: dict[str, float] | None = None
logprobs: bool | None = False
top_logprobs: int | None = 0
max_tokens: int | None = Field(
default=None,
deprecated="max_tokens is deprecated in favor of "
"the max_completion_tokens field",
)
max_completion_tokens: int | None = None
n: int | None = 1
presence_penalty: float | None = 0.0
response_format: AnyResponseFormat | None = None
seed: int | None = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
stop: str | list[str] | None = []
stream: bool | None = False
stream_options: StreamOptions | None = None
temperature: float | None = None
top_p: float | None = None
tools: list[ChatCompletionToolsParam] | None = None
tool_choice: (
Literal["none"]
| Literal["auto"]
| Literal["required"]
| ChatCompletionNamedToolChoiceParam
| None
) = "none"
reasoning_effort: Literal["low", "medium", "high"] | None = None
include_reasoning: bool = True
parallel_tool_calls: bool | None = True
# NOTE this will be ignored by vLLM
user: str | None = None
# --8<-- [start:chat-completion-sampling-params]
use_beam_search: bool = False
top_k: int | None = None
min_p: float | None = None
repetition_penalty: float | None = None
length_penalty: float = 1.0
stop_token_ids: list[int] | None = []
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
truncate_prompt_tokens: Annotated[int, Field(ge=-1, le=_LONG_INFO.max)] | None = (
None
)
prompt_logprobs: int | None = None
allowed_token_ids: list[int] | None = None
bad_words: list[str] = Field(default_factory=list)
# --8<-- [end:chat-completion-sampling-params]
# --8<-- [start:chat-completion-extra-params]
echo: bool = Field(
default=False,
description=(
"If true, the new message will be prepended with the last message "
"if they belong to the same role."
),
)
add_generation_prompt: bool = Field(
default=True,
description=(
"If true, the generation prompt will be added to the chat template. "
"This is a parameter used by chat template in tokenizer config of the "
"model."
),
)
continue_final_message: bool = Field(
default=False,
description=(
"If this is set, the chat will be formatted so that the final "
"message in the chat is open-ended, without any EOS tokens. The "
"model will continue this message rather than starting a new one. "
'This allows you to "prefill" part of the model\'s response for it. '
"Cannot be used at the same time as `add_generation_prompt`."
),
)
add_special_tokens: bool = Field(
default=False,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."
),
)
documents: list[dict[str, str]] | None = Field(
default=None,
description=(
"A list of dicts representing documents that will be accessible to "
"the model if it is performing RAG (retrieval-augmented generation)."
" If the template does not support RAG, this argument will have no "
"effect. We recommend that each document should be a dict containing "
'"title" and "text" keys.'
),
)
chat_template: str | None = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."
),
)
chat_template_kwargs: dict[str, Any] | None = Field(
default=None,
description=(
"Additional keyword args to pass to the template renderer. "
"Will be accessible by the chat template."
),
)
mm_processor_kwargs: dict[str, Any] | None = Field(
default=None,
description=("Additional kwargs to pass to the HF processor."),
)
structured_outputs: StructuredOutputsParams | None = Field(
default=None,
description="Additional kwargs for structured outputs",
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."
),
)
request_id: str = Field(
default_factory=random_uuid,
description=(
"The request_id related to this request. If the caller does "
"not set it, a random_uuid will be generated. This id is used "
"through out the inference process and return in response."
),
)
return_tokens_as_token_ids: bool | None = Field(
default=None,
description=(
"If specified with 'logprobs', tokens are represented "
" as strings of the form 'token_id:{token_id}' so that tokens "
"that are not JSON-encodable can be identified."
),
)
return_token_ids: bool | None = Field(
default=None,
description=(
"If specified, the result will include token IDs alongside the "
"generated text. In streaming mode, prompt_token_ids is included "
"only in the first chunk, and token_ids contains the delta tokens "
"for each chunk. This is useful for debugging or when you "
"need to map generated text back to input tokens."
),
)
cache_salt: str | None = Field(
default=None,
description=(
"If specified, the prefix cache will be salted with the provided "
"string to prevent an attacker to guess prompts in multi-user "
"environments. The salt should be random, protected from "
"access by 3rd parties, and long enough to be "
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
"to 256 bit)."
),
)
kv_transfer_params: dict[str, Any] | None = Field(
default=None,
description="KVTransfer parameters used for disaggregated serving.",
)
vllm_xargs: dict[str, str | int | float | list[str | int | float]] | None = Field(
default=None,
description=(
"Additional request parameters with (list of) string or "
"numeric values, used by custom extensions."
),
)
# --8<-- [end:chat-completion-extra-params]
def build_chat_params(
self,
default_template: str | None,
default_template_content_format: ChatTemplateContentFormatOption,
) -> ChatParams:
return ChatParams(
chat_template=self.chat_template or default_template,
chat_template_content_format=default_template_content_format,
chat_template_kwargs=merge_kwargs(
self.chat_template_kwargs,
dict(
add_generation_prompt=self.add_generation_prompt,
continue_final_message=self.continue_final_message,
documents=self.documents,
reasoning_effort=self.reasoning_effort,
),
),
)
def build_tok_params(self, model_config: ModelConfig) -> TokenizeParams:
if self.max_completion_tokens is not None:
max_output_tokens: int | None = self.max_completion_tokens
max_output_tokens_param = "max_completion_tokens"
else:
max_output_tokens = self.max_tokens
max_output_tokens_param = "max_tokens"
return TokenizeParams(
max_total_tokens=model_config.max_model_len,
max_output_tokens=max_output_tokens or 0,
truncate_prompt_tokens=self.truncate_prompt_tokens,
add_special_tokens=self.add_special_tokens,
needs_detokenization=bool(self.echo and not self.return_token_ids),
max_total_tokens_param="max_model_len",
max_output_tokens_param=max_output_tokens_param,
)
# Default sampling parameters for chat completion requests
_DEFAULT_SAMPLING_PARAMS: dict = {
"repetition_penalty": 1.0,
"temperature": 1.0,
"top_p": 1.0,
"top_k": 0,
"min_p": 0.0,
}
def to_beam_search_params(
self, max_tokens: int, default_sampling_params: dict
) -> BeamSearchParams:
n = self.n if self.n is not None else 1
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get(
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
)
return BeamSearchParams(
beam_width=n,
max_tokens=max_tokens,
ignore_eos=self.ignore_eos,
temperature=temperature,
length_penalty=self.length_penalty,
include_stop_str_in_output=self.include_stop_str_in_output,
)
def to_sampling_params(
self,
max_tokens: int,
default_sampling_params: dict,
) -> SamplingParams:
# Default parameters
if (repetition_penalty := self.repetition_penalty) is None:
repetition_penalty = default_sampling_params.get(
"repetition_penalty",
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
)
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get(
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"]
)
if (top_p := self.top_p) is None:
top_p = default_sampling_params.get(
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"]
)
if (top_k := self.top_k) is None:
top_k = default_sampling_params.get(
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"]
)
if (min_p := self.min_p) is None:
min_p = default_sampling_params.get(
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"]
)
prompt_logprobs = self.prompt_logprobs
if prompt_logprobs is None and self.echo:
prompt_logprobs = self.top_logprobs
response_format = self.response_format
if response_format is not None:
structured_outputs_kwargs = dict[str, Any]()
# Set structured output params for response format
if response_format.type == "json_object":
structured_outputs_kwargs["json_object"] = True
elif response_format.type == "json_schema":
json_schema = response_format.json_schema
assert json_schema is not None
structured_outputs_kwargs["json"] = json_schema.json_schema
elif response_format.type == "structural_tag":
structural_tag = response_format
assert structural_tag is not None and isinstance(
structural_tag,
(
LegacyStructuralTagResponseFormat,
StructuralTagResponseFormat,
),
)
s_tag_obj = structural_tag.model_dump(by_alias=True)
structured_outputs_kwargs["structural_tag"] = json.dumps(s_tag_obj)
# If structured outputs wasn't already enabled,
# we must enable it for these features to work
if len(structured_outputs_kwargs) > 0:
self.structured_outputs = (
StructuredOutputsParams(**structured_outputs_kwargs)
if self.structured_outputs is None
else replace(self.structured_outputs, **structured_outputs_kwargs)
)
extra_args: dict[str, Any] = self.vllm_xargs if self.vllm_xargs else {}
if self.kv_transfer_params:
# Pass in kv_transfer_params via extra_args
extra_args["kv_transfer_params"] = self.kv_transfer_params
return SamplingParams.from_optional(
n=self.n,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
logprobs=self.top_logprobs if self.logprobs else None,
prompt_logprobs=prompt_logprobs,
ignore_eos=self.ignore_eos,
max_tokens=max_tokens,
min_tokens=self.min_tokens,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
include_stop_str_in_output=self.include_stop_str_in_output,
truncate_prompt_tokens=self.truncate_prompt_tokens,
output_kind=RequestOutputKind.DELTA
if self.stream
else RequestOutputKind.FINAL_ONLY,
structured_outputs=self.structured_outputs,
logit_bias=self.logit_bias,
bad_words=self.bad_words,
allowed_token_ids=self.allowed_token_ids,
extra_args=extra_args or None,
skip_clone=True, # Created fresh per request, safe to skip clone
)
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
if data.get("stream_options") and not data.get("stream"):
raise VLLMValidationError(
"Stream options can only be defined when `stream=True`.",
parameter="stream_options",
)
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if data.get("stream") and (prompt_logprobs > 0 or prompt_logprobs == -1):
raise VLLMValidationError(
"`prompt_logprobs` are not available when `stream=True`.",
parameter="prompt_logprobs",
)
if prompt_logprobs < 0 and prompt_logprobs != -1:
raise VLLMValidationError(
"`prompt_logprobs` must be a positive value or -1.",
parameter="prompt_logprobs",
value=prompt_logprobs,
)
if (top_logprobs := data.get("top_logprobs")) is not None:
if top_logprobs < 0 and top_logprobs != -1:
raise VLLMValidationError(
"`top_logprobs` must be a positive value or -1.",
parameter="top_logprobs",
value=top_logprobs,
)
if (top_logprobs == -1 or top_logprobs > 0) and not data.get("logprobs"):
raise VLLMValidationError(
"when using `top_logprobs`, `logprobs` must be set to true.",
parameter="top_logprobs",
)
return data
@model_validator(mode="before")
@classmethod
def check_structured_outputs_count(cls, data):
if isinstance(data, ValueError):
raise data
if data.get("structured_outputs", None) is None:
return data
structured_outputs_kwargs = data["structured_outputs"]
count = sum(
structured_outputs_kwargs.get(k) is not None
for k in ("json", "regex", "choice")
)
# you can only use one kind of constraints for structured outputs
if count > 1:
raise ValueError(
"You can only use one kind of constraints for structured "
"outputs ('json', 'regex' or 'choice')."
)
# you can only either use structured outputs or tools, not both
if count > 1 and data.get("tool_choice", "none") not in (
"none",
"auto",
"required",
):
raise ValueError(
"You can only either use constraints for structured outputs "
"or tools, not both."
)
return data
@model_validator(mode="before")
@classmethod
def check_tool_usage(cls, data):
# if "tool_choice" is not specified but tools are provided,
# default to "auto" tool_choice
if "tool_choice" not in data and data.get("tools"):
data["tool_choice"] = "auto"
# if "tool_choice" is "none" -- no validation is needed for tools
if "tool_choice" in data and data["tool_choice"] == "none":
return data
# if "tool_choice" is specified -- validation
if "tool_choice" in data and data["tool_choice"] is not None:
# ensure that if "tool choice" is specified, tools are present
if "tools" not in data or data["tools"] is None:
raise ValueError("When using `tool_choice`, `tools` must be set.")
# make sure that tool choice is either a named tool
# OR that it's set to "auto" or "required"
if data["tool_choice"] not in ["auto", "required"] and not isinstance(
data["tool_choice"], dict
):
raise ValueError(
f"Invalid value for `tool_choice`: {data['tool_choice']}! "
'Only named tools, "none", "auto" or "required" '
"are supported."
)
# if tool_choice is "required" but the "tools" list is empty,
# override the data to behave like "none" to align with
# OpenAI’s behavior.
if (
data["tool_choice"] == "required"
and isinstance(data["tools"], list)
and len(data["tools"]) == 0
):
data["tool_choice"] = "none"
del data["tools"]
return data
# ensure that if "tool_choice" is specified as an object,
# it matches a valid tool
correct_usage_message = (
'Correct usage: `{"type": "function",'
' "function": {"name": "my_function"}}`'
)
if isinstance(data["tool_choice"], dict):
valid_tool = False
function = data["tool_choice"].get("function")
if not isinstance(function, dict):
raise ValueError(
f"Invalid value for `function`: `{function}` in "
f"`tool_choice`! {correct_usage_message}"
)
if "name" not in function:
raise ValueError(
f"Expected field `name` in `function` in "
f"`tool_choice`! {correct_usage_message}"
)
function_name = function["name"]
if not isinstance(function_name, str) or len(function_name) == 0:
raise ValueError(
f"Invalid `name` in `function`: `{function_name}`"
f" in `tool_choice`! {correct_usage_message}"
)
for tool in data["tools"]:
if tool["function"]["name"] == function_name:
valid_tool = True
break
if not valid_tool:
raise ValueError(
"The tool specified in `tool_choice` does not match any"
" of the specified `tools`"
)
return data
@model_validator(mode="before")
@classmethod
def check_generation_prompt(cls, data):
if data.get("continue_final_message") and data.get("add_generation_prompt"):
raise ValueError(
"Cannot set both `continue_final_message` and "
"`add_generation_prompt` to True."
)
return data
@model_validator(mode="before")
@classmethod
def check_cache_salt_support(cls, data):
if data.get("cache_salt") is not None and (
not isinstance(data["cache_salt"], str) or not data["cache_salt"]
):
raise ValueError(
"Parameter 'cache_salt' must be a non-empty string if provided."
)
return data
@model_validator(mode="before")
@classmethod
def check_system_message_content_type(cls, data):
"""Warn if system messages contain non-text content.
According to OpenAI API spec, system messages can only be of type
'text'. We log a warning instead of rejecting to avoid breaking
users who intentionally send multimodal system messages.
See: https://platform.openai.com/docs/api-reference/chat/create#chat_create-messages-system_message
"""
if not isinstance(data, dict):
return data
messages = data.get("messages", [])
for msg in messages:
# Check if this is a system message
if isinstance(msg, dict) and msg.get("role") == "system":
content = msg.get("content")
# If content is a list (multimodal format)
if isinstance(content, list):
for part in content:
if isinstance(part, dict):
part_type = part.get("type")
# Infer type when 'type' field is not explicit
if part_type is None:
if "image_url" in part or "image_pil" in part:
part_type = "image_url"
elif "image_embeds" in part:
part_type = "image_embeds"
elif "audio_url" in part:
part_type = "audio_url"
elif "input_audio" in part:
part_type = "input_audio"
elif "audio_embeds" in part:
part_type = "audio_embeds"
elif "video_url" in part:
part_type = "video_url"
# Warn about non-text content in system messages
if part_type and part_type != "text":
logger.warning_once(
"System messages should only contain text "
"content according to the OpenAI API spec. "
"Found content type: '%s'.",
part_type,
)
return data