Skip to content

vllm.entrypoints.openai.responses.serving

OpenAIServingResponses

Bases: OpenAIServing

Source code in vllm/entrypoints/openai/responses/serving.py
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
class OpenAIServingResponses(OpenAIServing):
    def __init__(
        self,
        engine_client: EngineClient,
        models: OpenAIServingModels,
        *,
        request_logger: RequestLogger | None,
        chat_template: str | None,
        chat_template_content_format: ChatTemplateContentFormatOption,
        return_tokens_as_token_ids: bool = False,
        reasoning_parser: str = "",
        enable_auto_tools: bool = False,
        tool_parser: str | None = None,
        tool_server: ToolServer | None = None,
        enable_prompt_tokens_details: bool = False,
        enable_force_include_usage: bool = False,
        enable_log_outputs: bool = False,
        log_error_stack: bool = False,
    ) -> None:
        super().__init__(
            engine_client=engine_client,
            models=models,
            request_logger=request_logger,
            return_tokens_as_token_ids=return_tokens_as_token_ids,
            log_error_stack=log_error_stack,
        )

        self.chat_template = chat_template
        self.chat_template_content_format: Final = chat_template_content_format
        self.enable_log_outputs = enable_log_outputs

        # Set up the unified parser - either a unified parser or fall back to
        # separate parsers accessed through the parser interface
        self.parser = ParserManager.get_parser(
            tool_parser_name=tool_parser,
            reasoning_parser_name=reasoning_parser,
            enable_auto_tools=enable_auto_tools,
            model_name=self.model_config.model,
        )
        self.enable_prompt_tokens_details = enable_prompt_tokens_details
        self.enable_force_include_usage = enable_force_include_usage

        self.default_sampling_params = self.model_config.get_diff_sampling_param()
        mc = self.model_config
        self.override_max_tokens = (
            self.default_sampling_params.get("max_tokens")
            if mc.generation_config not in ("auto", "vllm")
            else getattr(mc, "override_generation_config", {}).get("max_new_tokens")
        )

        # If False (default), the "store" option is (silently) ignored and the
        # response is not stored. If True, the response is stored in memory.
        # NOTE(woosuk): This may not be intuitive for users, as the default
        # behavior in OpenAI's Responses API is to store the response, but
        # vLLM's default behavior is not.
        self.enable_store = envs.VLLM_ENABLE_RESPONSES_API_STORE
        if self.enable_store:
            logger.warning_once(
                "`VLLM_ENABLE_RESPONSES_API_STORE` is enabled. This may "
                "cause a memory leak since we never remove responses from "
                "the store."
            )

        self.use_harmony = self.model_config.hf_config.model_type == "gpt_oss"
        if self.use_harmony:
            logger.warning(
                "For gpt-oss, we ignore --enable-auto-tool-choice "
                "and always enable tool use."
            )
            # OpenAI models have two EOS-like tokens: <|return|> and <|call|>.
            # We need to add them to the stop token ids.
            if "stop_token_ids" not in self.default_sampling_params:
                self.default_sampling_params["stop_token_ids"] = []
            self.default_sampling_params["stop_token_ids"].extend(
                get_stop_tokens_for_assistant_actions()
            )

        # Handle tool call ID type for Kimi K2 (supporting test mocking via overrides)
        hf_overrides = getattr(self.model_config, "hf_overrides", None)
        if self.model_config.hf_text_config.model_type == "kimi_k2" or (
            isinstance(hf_overrides, dict)
            and hf_overrides.get("model_type") == "kimi_k2"
        ):
            self.tool_call_id_type = "kimi_k2"
        else:
            self.tool_call_id_type = "random"

        self.enable_auto_tools = enable_auto_tools
        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove responses from the store.
        self.response_store: dict[str, ResponsesResponse] = {}
        self.response_store_lock = asyncio.Lock()

        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove messages from the store.
        self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}

        # HACK(wuhang): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove events from the store.
        self.event_store: dict[
            str, tuple[deque[StreamingResponsesResponse], asyncio.Event]
        ] = {}

        self.background_tasks: dict[str, asyncio.Task] = {}

        self.tool_server = tool_server

    def _validate_generator_input(
        self,
        engine_prompt: ProcessorInputs,
    ) -> ErrorResponse | None:
        """Add validations to the input to the generator here."""
        prompt_len = self._extract_prompt_len(engine_prompt)
        max_model_len = self.model_config.max_model_len

        if prompt_len >= max_model_len:
            error_message = (
                f"The engine prompt length {prompt_len} "
                f"exceeds the max_model_len {max_model_len}. "
                "Please reduce prompt."
            )
            return self.create_error_response(
                err_type="invalid_request_error",
                message=error_message,
                status_code=HTTPStatus.BAD_REQUEST,
                param="input",
            )

        return None

    def _validate_create_responses_input(
        self, request: ResponsesRequest
    ) -> ErrorResponse | None:
        if self.use_harmony and request.is_include_output_logprobs():
            return self.create_error_response(
                err_type="invalid_request_error",
                message="logprobs are not supported with gpt-oss models",
                status_code=HTTPStatus.BAD_REQUEST,
                param="logprobs",
            )
        if request.store and not self.enable_store and request.background:
            return self.create_error_response(
                err_type="invalid_request_error",
                message=(
                    "This vLLM engine does not support `store=True` and "
                    "therefore does not support the background mode. To "
                    "enable these features, set the environment variable "
                    "`VLLM_ENABLE_RESPONSES_API_STORE=1` when launching "
                    "the vLLM server."
                ),
                status_code=HTTPStatus.BAD_REQUEST,
                param="background",
            )
        if request.previous_input_messages and request.previous_response_id:
            return self.create_error_response(
                err_type="invalid_request_error",
                message="Only one of `previous_input_messages` and "
                "`previous_response_id` can be set.",
                status_code=HTTPStatus.BAD_REQUEST,
                param="previous_response_id",
            )
        return None

    async def create_responses(
        self,
        request: ResponsesRequest,
        raw_request: Request | None = None,
    ) -> (
        AsyncGenerator[StreamingResponsesResponse, None]
        | ResponsesResponse
        | ErrorResponse
    ):
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            logger.error("Error with model %s", error_check_ret)
            return error_check_ret
        maybe_validation_error = self._validate_create_responses_input(request)
        if maybe_validation_error is not None:
            return maybe_validation_error

        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error

        if request.store and not self.enable_store:
            # Disable the store option.
            # NOTE(woosuk): Although returning an error is possible, we opted
            # to implicitly disable store and process the request anyway, as
            # we assume most users do not intend to actually store the response
            # (i.e., their request's `store=True` just because it's the default
            # value).
            request.store = False

        # Handle the previous response ID.
        prev_response_id = request.previous_response_id
        if prev_response_id is not None:
            async with self.response_store_lock:
                prev_response = self.response_store.get(prev_response_id)
            if prev_response is None:
                return self._make_not_found_error(prev_response_id)
        else:
            prev_response = None

        try:
            lora_request = self._maybe_get_adapters(request)
            model_name = self.models.model_name(lora_request)

            if self.use_harmony:
                messages, engine_prompts = self._make_request_with_harmony(
                    request, prev_response
                )
            else:
                messages, engine_prompts = await self._make_request(
                    request, prev_response
                )

        except (
            ValueError,
            TypeError,
            RuntimeError,
            jinja2.TemplateError,
            NotImplementedError,
        ) as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(e)

        request_metadata = RequestResponseMetadata(request_id=request.request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata

        # Schedule the request and get the result generator.
        max_model_len = self.model_config.max_model_len
        generators: list[AsyncGenerator[ConversationContext, None]] = []

        # Only include builtin tools that the request actually asked for.
        # Without this filter, tools registered on the server (e.g. via
        # --tool-server demo) would be available for execution even when
        # the request didn't enable them.
        requested_tool_types = extract_tool_types(request.tools)
        builtin_tool_list: list[str] = []
        if self.tool_server is not None:
            if (
                self.tool_server.has_tool("browser")
                and "web_search_preview" in requested_tool_types
            ):
                builtin_tool_list.append("browser")
            if (
                self.tool_server.has_tool("python")
                and "code_interpreter" in requested_tool_types
            ):
                builtin_tool_list.append("python")
            if (
                self.tool_server.has_tool("container")
                and "container" in requested_tool_types
            ):
                builtin_tool_list.append("container")

        if self.tool_server is not None:
            available_tools = builtin_tool_list
        else:
            assert len(builtin_tool_list) == 0
            available_tools = []
        try:
            tokenizer = self.renderer.get_tokenizer()

            for engine_prompt in engine_prompts:
                maybe_error = self._validate_generator_input(engine_prompt)
                if maybe_error is not None:
                    return maybe_error

                default_max_tokens = get_max_tokens(
                    max_model_len,
                    request.max_output_tokens,
                    self._extract_prompt_len(engine_prompt),
                    self.default_sampling_params,
                    self.override_max_tokens,
                )

                sampling_params = request.to_sampling_params(
                    default_max_tokens, self.default_sampling_params
                )

                trace_headers = (
                    None
                    if raw_request is None
                    else await self._get_trace_headers(raw_request.headers)
                )

                context: ConversationContext
                if self.use_harmony:
                    if request.stream:
                        context = StreamingHarmonyContext(messages, available_tools)
                    else:
                        context = HarmonyContext(messages, available_tools)
                else:
                    if envs.VLLM_USE_EXPERIMENTAL_PARSER_CONTEXT:
                        # This is a feature in development for parsing
                        # tokens during generation instead of at the end
                        context = ParsableContext(
                            response_messages=messages,
                            tokenizer=tokenizer,
                            reasoning_parser_cls=self.parser.reasoning_parser_cls
                            if self.parser
                            else None,
                            request=request,
                            tool_parser_cls=self.parser.tool_parser_cls
                            if self.parser
                            else None,
                            available_tools=available_tools,
                            chat_template=self.chat_template,
                            chat_template_content_format=self.chat_template_content_format,
                        )
                    else:
                        context = SimpleContext()

                if self.parser and self.parser.reasoning_parser_cls is not None:
                    reasoning_parser = self.parser.reasoning_parser_cls(tokenizer)
                    if (
                        isinstance(
                            struct_out := sampling_params.structured_outputs,
                            StructuredOutputsParams,
                        )
                        and struct_out.all_non_structural_tag_constraints_none()
                    ):
                        sampling_params.structured_outputs = replace(
                            struct_out,
                            structural_tag=reasoning_parser.prepare_structured_tag(
                                struct_out.structural_tag, self.tool_server
                            ),
                        )
                generator = self._generate_with_builtin_tools(
                    request_id=request.request_id,
                    engine_prompt=engine_prompt,
                    sampling_params=sampling_params,
                    context=context,
                    lora_request=lora_request,
                    priority=request.priority,
                    trace_headers=trace_headers,
                )
                generators.append(generator)
        except ValueError as e:
            return self.create_error_response(e)

        assert len(generators) == 1
        (result_generator,) = generators

        # Store the input messages.
        if request.store:
            self.msg_store[request.request_id] = messages

        if request.background:
            created_time = int(time.time())
            response = ResponsesResponse.from_request(
                request,
                sampling_params,
                model_name=model_name,
                created_time=created_time,
                output=[],
                status="queued",
                usage=None,
            )
            async with self.response_store_lock:
                self.response_store[response.id] = response

            # Run the request in the background.
            if request.stream:
                task = asyncio.create_task(
                    self._run_background_request_stream(
                        request,
                        sampling_params,
                        result_generator,
                        context,
                        model_name,
                        tokenizer,
                        request_metadata,
                        created_time,
                    ),
                    name=f"create_{request.request_id}",
                )
            else:
                task = asyncio.create_task(
                    self._run_background_request(
                        request,
                        sampling_params,
                        result_generator,
                        context,
                        model_name,
                        tokenizer,
                        request_metadata,
                        created_time,
                    ),
                    name=f"create_{response.id}",
                )

            # For cleanup.
            response_id = response.id
            self.background_tasks[response_id] = task
            task.add_done_callback(
                lambda _: self.background_tasks.pop(response_id, None)
            )

            if request.stream:
                return self.responses_background_stream_generator(request.request_id)
            return response

        if request.stream:
            return self.responses_stream_generator(
                request,
                sampling_params,
                result_generator,
                context,
                model_name,
                tokenizer,
                request_metadata,
            )

        try:
            return await self.responses_full_generator(
                request,
                sampling_params,
                result_generator,
                context,
                model_name,
                tokenizer,
                request_metadata,
            )
        except GenerationError as e:
            return self._convert_generation_error_to_response(e)
        except Exception as e:
            return self.create_error_response(e)

    async def _make_request(
        self,
        request: ResponsesRequest,
        prev_response: ResponsesResponse | None,
    ):
        tool_dicts = construct_tool_dicts(request.tools, request.tool_choice)
        # Construct the input messages.
        messages = construct_input_messages(
            request_instructions=request.instructions,
            request_input=request.input,
            prev_msg=self.msg_store.get(prev_response.id) if prev_response else None,
            prev_response_output=prev_response.output if prev_response else None,
        )

        _, engine_prompts = await self._preprocess_chat(
            request,
            messages,
            default_template=self.chat_template,
            default_template_content_format=self.chat_template_content_format,
            default_template_kwargs=None,
            tool_dicts=tool_dicts,
            tool_parser=self.parser.tool_parser_cls if self.parser else None,
        )
        return messages, engine_prompts

    def _make_request_with_harmony(
        self,
        request: ResponsesRequest,
        prev_response: ResponsesResponse | None,
    ):
        if request.tool_choice != "auto":
            raise NotImplementedError(
                "Only 'auto' tool_choice is supported in response API with Harmony"
            )

        messages = self._construct_input_messages_with_harmony(request, prev_response)
        prompt_token_ids = render_for_completion(messages)
        engine_prompt = token_inputs(prompt_token_ids)

        # Add cache_salt if provided in the request
        if request.cache_salt is not None:
            engine_prompt["cache_salt"] = request.cache_salt

        return messages, [engine_prompt]

    async def _initialize_tool_sessions(
        self,
        request: ResponsesRequest,
        context: ConversationContext,
        exit_stack: AsyncExitStack,
    ):
        # we should only initialize the tool session if the request needs tools
        if len(request.tools) == 0:
            return
        mcp_tools = {
            tool.server_label: tool for tool in request.tools if tool.type == "mcp"
        }
        await context.init_tool_sessions(
            self.tool_server, exit_stack, request.request_id, mcp_tools
        )

    async def responses_full_generator(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[ConversationContext],
        context: ConversationContext,
        model_name: str,
        tokenizer: TokenizerLike,
        request_metadata: RequestResponseMetadata,
        created_time: int | None = None,
    ) -> ErrorResponse | ResponsesResponse:
        if created_time is None:
            created_time = int(time.time())

        async with AsyncExitStack() as exit_stack:
            try:
                await self._initialize_tool_sessions(request, context, exit_stack)
                async for _ in result_generator:
                    pass
            except asyncio.CancelledError:
                return self.create_error_response("Client disconnected")
            except ValueError as e:
                return self.create_error_response(e)

        # NOTE: Implementation of status is still WIP, but for now
        # we guarantee that if the status is not "completed", it is accurate.
        # "completed" is implemented as the "catch-all" for now.
        status: ResponseStatus = "completed"

        input_messages: ResponseInputOutputMessage | None = None
        output_messages: ResponseInputOutputMessage | None = None
        if self.use_harmony:
            assert isinstance(context, HarmonyContext)
            output = self._make_response_output_items_with_harmony(context)
            if request.enable_response_messages:
                input_messages = context.messages[: context.num_init_messages]
                output_messages = context.messages[context.num_init_messages :]
            num_tool_output_tokens = context.num_tool_output_tokens
            if len(output) > 0:
                if context.finish_reason == "length":
                    status = "incomplete"
                elif context.finish_reason == "abort":
                    status = "cancelled"
                else:
                    self._raise_if_error(context.finish_reason, request.request_id)
            else:
                status = "incomplete"
        elif isinstance(context, ParsableContext):
            output = context.parser.make_response_output_items_from_parsable_context()

            if request.enable_response_messages:
                input_messages = context.input_messages
                output_messages = context.output_messages

            # TODO: Calculate usage.
            # assert final_res.prompt_token_ids is not None
            num_tool_output_tokens = 0

            # Check finish reason from the parser
            if context.parser.finish_reason == "length":
                status = "incomplete"
        else:
            assert isinstance(context, SimpleContext)
            # Use final_output which has accumulated text/token_ids/logprobs
            final_res = context.final_output
            assert final_res is not None
            assert len(final_res.outputs) == 1
            final_output = final_res.outputs[0]

            # finish_reason='error' indicates retryable internal error
            self._raise_if_error(final_output.finish_reason, request.request_id)

            # Check if generation was stopped due to max_tokens
            if final_output.finish_reason == "length":
                status = "incomplete"

            output = self._make_response_output_items(request, final_output, tokenizer)

            if request.enable_response_messages:
                input_messages = context.input_messages
                output_messages = context.output_messages

            # Calculate usage.
            assert final_res.prompt_token_ids is not None
            num_tool_output_tokens = 0

        assert isinstance(context, (SimpleContext, HarmonyContext, ParsableContext))
        num_prompt_tokens = context.num_prompt_tokens
        num_generated_tokens = context.num_output_tokens
        num_cached_tokens = context.num_cached_tokens
        num_reasoning_tokens = context.num_reasoning_tokens
        # For text-based reasoning parsers (e.g., <think>...</think>),
        # HarmonyContext already counts reasoning tokens via channels.
        # For Simple/Parsable contexts, derive reasoning_tokens from
        # accumulated output token IDs using the parser if not already set.
        if (
            num_reasoning_tokens == 0
            and self.parser is not None
            and self.parser.reasoning_parser_cls is not None
            and isinstance(context, (SimpleContext, ParsableContext))
        ):
            reasoning_parser = self.parser.reasoning_parser_cls(tokenizer)
            accumulated = getattr(context, "_accumulated_token_ids", []) or []
            num_reasoning_tokens = reasoning_parser.count_reasoning_tokens(accumulated)

        usage = ResponseUsage(
            input_tokens=num_prompt_tokens,
            output_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
            input_tokens_details=InputTokensDetails(
                cached_tokens=num_cached_tokens,
                input_tokens_per_turn=[
                    turn.input_tokens for turn in context.all_turn_metrics
                ],
                cached_tokens_per_turn=[
                    turn.cached_input_tokens for turn in context.all_turn_metrics
                ],
            ),
            output_tokens_details=OutputTokensDetails(
                reasoning_tokens=num_reasoning_tokens,
                tool_output_tokens=num_tool_output_tokens,
                output_tokens_per_turn=[
                    turn.output_tokens for turn in context.all_turn_metrics
                ],
                tool_output_tokens_per_turn=[
                    turn.tool_output_tokens for turn in context.all_turn_metrics
                ],
            ),
        )
        response = ResponsesResponse.from_request(
            request,
            sampling_params,
            input_messages=input_messages,
            output_messages=output_messages,
            model_name=model_name,
            created_time=created_time,
            output=output,
            status=status,
            usage=usage,
        )

        if request.store:
            async with self.response_store_lock:
                stored_response = self.response_store.get(response.id)
                # If the response is already cancelled, don't update it.
                if stored_response is None or stored_response.status != "cancelled":
                    self.response_store[response.id] = response
        return response

    def _topk_logprobs(
        self,
        logprobs: dict[int, SampleLogprob],
        top_logprobs: int,
        tokenizer: TokenizerLike,
    ) -> list[LogprobTopLogprob]:
        """Returns the top-k logprobs from the logprobs dictionary."""
        out = []
        for i, (token_id, _logprob) in enumerate(logprobs.items()):
            if i >= top_logprobs:
                break
            text = self._get_decoded_token(
                logprob=_logprob,
                token_id=token_id,
                tokenizer=tokenizer,
                return_as_token_id=self.return_tokens_as_token_ids,
            )
            out.append(
                LogprobTopLogprob(
                    token=text,
                    logprob=max(_logprob.logprob, -9999.0),
                    bytes=list(text.encode("utf-8", errors="replace")),
                )
            )
        return out

    def _create_response_logprobs(
        self,
        token_ids: Sequence[int],
        logprobs: SampleLogprobs | None,
        tokenizer: TokenizerLike,
        top_logprobs: int | None = None,
    ) -> list[Logprob]:
        assert logprobs is not None, "logprobs must be provided"
        assert len(token_ids) == len(logprobs), (
            "token_ids and logprobs.token_ids must have the same length"
        )
        out = []
        for i, token_id in enumerate(token_ids):
            logprob = logprobs[i]
            token_logprob = logprob[token_id]
            text = self._get_decoded_token(
                logprob=token_logprob,
                token_id=token_id,
                tokenizer=tokenizer,
                return_as_token_id=self.return_tokens_as_token_ids,
            )
            out.append(
                Logprob(
                    token=text,
                    logprob=max(token_logprob.logprob, -9999.0),
                    bytes=list(text.encode("utf-8", errors="replace")),
                    top_logprobs=(
                        self._topk_logprobs(
                            logprob, top_logprobs=top_logprobs, tokenizer=tokenizer
                        )
                        if top_logprobs
                        else []
                    ),
                )
            )
        return out

    def _create_stream_response_logprobs(
        self,
        token_ids: Sequence[int],
        logprobs: SampleLogprobs | None,
        tokenizer: TokenizerLike,
        top_logprobs: int | None = None,
    ) -> list[response_text_delta_event.Logprob]:
        lgs = self._create_response_logprobs(
            token_ids=token_ids,
            logprobs=logprobs,
            tokenizer=tokenizer,
            top_logprobs=top_logprobs,
        )
        return [
            response_text_delta_event.Logprob(
                token=lg.token,
                logprob=lg.logprob,
                top_logprobs=[
                    response_text_delta_event.LogprobTopLogprob(
                        token=tl.token, logprob=tl.logprob
                    )
                    for tl in lg.top_logprobs
                ],
            )
            for lg in lgs
        ]

    def _make_response_output_items(
        self,
        request: ResponsesRequest,
        final_output: CompletionOutput,
        tokenizer: TokenizerLike,
    ) -> list[ResponseOutputItem]:
        # Log complete response if output logging is enabled
        if self.enable_log_outputs and self.request_logger:
            self.request_logger.log_outputs(
                request_id=request.request_id,
                outputs=final_output.text,
                output_token_ids=final_output.token_ids,
                finish_reason=final_output.finish_reason,
                is_streaming=False,
                delta=False,
            )

        # Compute logprobs if requested
        logprobs = None
        if request.is_include_output_logprobs() and final_output.logprobs:
            logprobs = self._create_response_logprobs(
                token_ids=final_output.token_ids,
                logprobs=final_output.logprobs,
                tokenizer=tokenizer,
                top_logprobs=request.top_logprobs,
            )

        # Use parser to extract and create response output items
        if self.parser:
            parser = self.parser(tokenizer)
            return parser.extract_response_outputs(
                model_output=final_output.text,
                request=request,
                enable_auto_tools=self.enable_auto_tools,
                tool_call_id_type=self.tool_call_id_type,
                logprobs=logprobs,
            )

        # Fallback when no parser is configured
        return [
            ResponseOutputMessage(
                id=f"msg_{random_uuid()}",
                content=[
                    ResponseOutputText(
                        text=final_output.text,
                        annotations=[],
                        type="output_text",
                        logprobs=logprobs,
                    )
                ]
                if final_output.text
                else [],
                role="assistant",
                status="completed",
                type="message",
            )
        ]

    def _make_response_output_items_with_harmony(
        self,
        context: HarmonyContext,
    ) -> list[ResponseOutputItem]:
        output_items: list[ResponseOutputItem] = []
        num_init_messages = context.num_init_messages
        for msg in context.messages[num_init_messages:]:
            output_items.extend(parse_output_message(msg))
        # Handle the generation stopped in the middle (if any).
        last_items = parse_remaining_state(context.parser)
        if last_items:
            output_items.extend(last_items)
        return output_items

    def _extract_system_message_from_request(
        self, request: ResponsesRequest
    ) -> str | None:
        system_msg = None
        if not isinstance(request.input, str):
            for response_msg in request.input:
                if (
                    isinstance(response_msg, dict)
                    and response_msg.get("role") == "system"
                ):
                    content = response_msg.get("content")
                    if isinstance(content, str):
                        system_msg = content
                    elif isinstance(content, list):
                        for param in content:
                            if (
                                isinstance(param, dict)
                                and param.get("type") == "input_text"
                            ):
                                system_msg = param.get("text")
                                break
                    break
        return system_msg

    def _construct_harmony_system_input_message(
        self, request: ResponsesRequest, with_custom_tools: bool, tool_types: set[str]
    ) -> OpenAIHarmonyMessage:
        model_identity = self._extract_system_message_from_request(request)

        reasoning_effort = request.reasoning.effort if request.reasoning else None

        # Extract allowed_tools from MCP tool requests
        allowed_tools_map = _extract_allowed_tools_from_mcp_requests(request.tools)

        # Get filtered tool descriptions first.
        # If get_tool_description returns None (due to filtering), the tool is disabled.
        browser_description = (
            self.tool_server.get_tool_description(
                "browser", allowed_tools_map.get("web_search_preview")
            )
            if "web_search_preview" in tool_types
            and self.tool_server is not None
            and self.tool_server.has_tool("browser")
            else None
        )
        python_description = (
            self.tool_server.get_tool_description(
                "python", allowed_tools_map.get("code_interpreter")
            )
            if "code_interpreter" in tool_types
            and self.tool_server is not None
            and self.tool_server.has_tool("python")
            else None
        )
        container_description = (
            self.tool_server.get_tool_description(
                "container", allowed_tools_map.get("container")
            )
            if "container" in tool_types
            and self.tool_server is not None
            and self.tool_server.has_tool("container")
            else None
        )

        sys_msg = get_system_message(
            model_identity=model_identity,
            reasoning_effort=reasoning_effort,
            browser_description=browser_description,
            python_description=python_description,
            container_description=container_description,
            instructions=request.instructions,
            with_custom_tools=with_custom_tools,
        )
        return sys_msg

    def _construct_input_messages_with_harmony(
        self,
        request: ResponsesRequest,
        prev_response: ResponsesResponse | None,
    ) -> list[OpenAIHarmonyMessage]:
        messages: list[OpenAIHarmonyMessage] = []
        if prev_response is None:
            # New conversation.
            tool_types = extract_tool_types(request.tools)
            with_custom_tools = has_custom_tools(tool_types)

            sys_msg = self._construct_harmony_system_input_message(
                request, with_custom_tools, tool_types
            )
            messages.append(sys_msg)
            if with_custom_tools:
                dev_msg = get_developer_message(
                    instructions=request.instructions, tools=request.tools
                )
                messages.append(dev_msg)
            messages += construct_harmony_previous_input_messages(request)

        else:
            # Continue the previous conversation.
            # FIXME(woosuk): Currently, request params like reasoning and
            # instructions are ignored.
            prev_msgs = self.msg_store[prev_response.id]

            # FIXME(woosuk): The slice-delete-reappend cycle below is
            # currently a no-op --- it removes messages then puts them all
            # back unfiltered. It may be intentionally deferred (see FIXME
            # above) or redundant if the Harmony encoder already strips
            # analysis messages at render time. If analysis messages need
            # to be dropped here, add a channel != "analysis" filter when
            # re-appending, similar to auto_drop_analysis_messages in
            # harmony_utils.py.
            if len(prev_msgs) > 0:
                last_msg = prev_msgs[-1]
                assert isinstance(last_msg, OpenAIHarmonyMessage)
                if last_msg.channel == "final":
                    prev_final_msg_idx = -1
                    for i in range(len(prev_msgs) - 2, -1, -1):
                        prev_msg_i = prev_msgs[i]
                        assert isinstance(prev_msg_i, OpenAIHarmonyMessage)
                        if prev_msg_i.channel == "final":
                            prev_final_msg_idx = i
                            break
                    recent_turn_msgs = prev_msgs[prev_final_msg_idx + 1 :]
                    del prev_msgs[prev_final_msg_idx + 1 :]
                    for msg in recent_turn_msgs:
                        assert isinstance(msg, OpenAIHarmonyMessage)
                        prev_msgs.append(msg)
            messages.extend(prev_msgs)
        # Append the new input.
        # Responses API supports simple text inputs without chat format.
        if isinstance(request.input, str):
            # Skip empty string input when previous_input_messages supplies
            # the full conversation history --- an empty trailing user message
            # confuses the model into thinking nothing was sent.
            if request.input or not request.previous_input_messages:
                messages.append(get_user_message(request.input))
        else:
            if prev_response is not None:
                prev_outputs = copy(prev_response.output)
            else:
                prev_outputs = []
            for response_msg in request.input:
                new_msg = parse_response_input(response_msg, prev_outputs)
                if new_msg.author.role != "system":
                    messages.append(new_msg)

                # User passes in a tool call request and its output. We need
                # to add the tool call request to prev_outputs so that the
                # parse_response_input can find the tool call request when
                # parsing the tool call output.
                if isinstance(response_msg, ResponseFunctionToolCall):
                    prev_outputs.append(response_msg)
        return messages

    async def _run_background_request_stream(
        self,
        request: ResponsesRequest,
        *args,
        **kwargs,
    ):
        event_deque: deque[StreamingResponsesResponse] = deque()
        new_event_signal = asyncio.Event()
        self.event_store[request.request_id] = (event_deque, new_event_signal)
        response = None
        try:
            generator = self.responses_stream_generator(request, *args, **kwargs)
            async for event in generator:
                event_deque.append(event)
                new_event_signal.set()  # Signal new event available
        except GenerationError as e:
            response = self._convert_generation_error_to_response(e)
        except Exception as e:
            logger.exception("Background request failed for %s", request.request_id)
            response = self.create_error_response(e)
        finally:
            new_event_signal.set()

        if response is not None and isinstance(response, ErrorResponse):
            # If the request has failed, update the status to "failed".
            response_id = request.request_id
            async with self.response_store_lock:
                stored_response = self.response_store.get(response_id)
                assert stored_response is not None
                if stored_response.status not in ("completed", "cancelled"):
                    stored_response.status = "failed"

    async def _run_background_request(
        self,
        request: ResponsesRequest,
        *args,
        **kwargs,
    ):
        try:
            response = await self.responses_full_generator(request, *args, **kwargs)
        except GenerationError as e:
            response = self._convert_generation_error_to_response(e)
        except Exception as e:
            logger.exception("Background request failed for %s", request.request_id)
            response = self.create_error_response(e)

        if isinstance(response, ErrorResponse):
            # If the request has failed, update the status to "failed".
            response_id = request.request_id
            async with self.response_store_lock:
                stored_response = self.response_store.get(response_id)
                assert stored_response is not None
                if stored_response.status not in ("completed", "cancelled"):
                    stored_response.status = "failed"

    async def responses_background_stream_generator(
        self,
        response_id: str,
        starting_after: int | None = None,
    ) -> AsyncGenerator[StreamingResponsesResponse, None]:
        if response_id not in self.event_store:
            raise VLLMValidationError(
                f"Unknown response_id: {response_id}",
                parameter="response_id",
                value=response_id,
            )

        event_deque, new_event_signal = self.event_store[response_id]
        start_index = 0 if starting_after is None else starting_after + 1
        current_index = start_index

        while True:
            new_event_signal.clear()

            # Yield existing events from start_index
            while current_index < len(event_deque):
                event = event_deque[current_index]
                yield event
                if getattr(event, "type", "unknown") == "response.completed":
                    return
                current_index += 1

            await new_event_signal.wait()

    async def retrieve_responses(
        self,
        response_id: str,
        starting_after: int | None,
        stream: bool | None,
    ) -> (
        ErrorResponse
        | ResponsesResponse
        | AsyncGenerator[StreamingResponsesResponse, None]
    ):
        async with self.response_store_lock:
            response = self.response_store.get(response_id)

        if response is None:
            return self._make_not_found_error(response_id)

        if stream:
            return self.responses_background_stream_generator(
                response_id,
                starting_after,
            )
        return response

    async def cancel_responses(
        self,
        response_id: str,
    ) -> ErrorResponse | ResponsesResponse:
        async with self.response_store_lock:
            response = self.response_store.get(response_id)
            if response is None:
                return self._make_not_found_error(response_id)

            prev_status = response.status
            if prev_status not in ("queued", "in_progress"):
                return self.create_error_response(
                    err_type="invalid_request_error",
                    message="Cannot cancel a synchronous response.",
                    param="response_id",
                )

            # Update the status to "cancelled".
            response.status = "cancelled"

        # Abort the request.
        if task := self.background_tasks.get(response_id):
            task.cancel()
            try:
                await task
            except asyncio.CancelledError:
                logger.exception("Background task for %s was cancelled", response_id)
        return response

    def _make_not_found_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=f"Response with id '{response_id}' not found.",
            status_code=HTTPStatus.NOT_FOUND,
            param="response_id",
        )

    def _make_store_not_supported_error(self) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=(
                "`store=True` (default) is not supported. Please set "
                "`store=False` in Responses API or set "
                "`VLLM_ENABLE_RESPONSES_API_STORE=1` in the env var when "
                "starting the vLLM server."
            ),
            status_code=HTTPStatus.BAD_REQUEST,
            param="store",
        )

    async def _process_simple_streaming_events(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[ConversationContext | None],
        context: ConversationContext,
        model_name: str,
        tokenizer: TokenizerLike,
        request_metadata: RequestResponseMetadata,
        created_time: int,
        _increment_sequence_number_and_return: Callable[
            [StreamingResponsesResponse], StreamingResponsesResponse
        ],
    ) -> AsyncGenerator[StreamingResponsesResponse, None]:
        current_content_index = 0
        current_output_index = 0
        current_item_id = ""
        reasoning_parser = None
        if self.parser and self.parser.reasoning_parser_cls:
            reasoning_parser = self.parser.reasoning_parser_cls(tokenizer)
        previous_text = ""
        previous_token_ids: list[int] = []
        first_delta_sent = False
        previous_delta_messages: list[DeltaMessage] = []
        async for ctx in result_generator:
            assert isinstance(ctx, SimpleContext)
            if ctx.last_output is None:
                continue
            if ctx.last_output.outputs:
                output = ctx.last_output.outputs[0]
                # finish_reason='error' indicates a retryable error
                self._raise_if_error(output.finish_reason, request.request_id)
                if reasoning_parser:
                    delta_message = reasoning_parser.extract_reasoning_streaming(
                        previous_text=previous_text,
                        current_text=previous_text + output.text,
                        delta_text=output.text,
                        previous_token_ids=previous_token_ids,
                        current_token_ids=previous_token_ids + output.token_ids,
                        delta_token_ids=output.token_ids,
                    )
                else:
                    delta_message = DeltaMessage(
                        content=output.text,
                    )
                previous_text += output.text
                previous_token_ids += output.token_ids
                if not delta_message:
                    continue
                if not first_delta_sent:
                    current_item_id = str(uuid.uuid4())
                    if delta_message.reasoning:
                        yield _increment_sequence_number_and_return(
                            ResponseOutputItemAddedEvent(
                                type="response.output_item.added",
                                sequence_number=-1,
                                output_index=current_output_index,
                                item=ResponseReasoningItem(
                                    type="reasoning",
                                    id=current_item_id,
                                    summary=[],
                                    status="in_progress",
                                ),
                            )
                        )
                    else:
                        yield _increment_sequence_number_and_return(
                            ResponseOutputItemAddedEvent(
                                type="response.output_item.added",
                                sequence_number=-1,
                                output_index=current_output_index,
                                item=ResponseOutputMessage(
                                    id=current_item_id,
                                    type="message",
                                    role="assistant",
                                    content=[],
                                    status="in_progress",
                                ),
                            )
                        )
                    yield _increment_sequence_number_and_return(
                        ResponseContentPartAddedEvent(
                            type="response.content_part.added",
                            sequence_number=-1,
                            output_index=current_output_index,
                            item_id=current_item_id,
                            content_index=current_content_index,
                            part=ResponseOutputText(
                                type="output_text",
                                text="",
                                annotations=[],
                                logprobs=[],
                            ),
                        )
                    )
                    current_content_index += 1
                    first_delta_sent = True
                # todo(kebe7jun) tool call support

                # check delta message and previous delta message are
                # same as content or reasoning content
                if (
                    previous_delta_messages
                    and previous_delta_messages[-1].reasoning is not None
                    and delta_message.content is not None
                ):
                    # from reasoning to normal content, send done
                    # event for reasoning
                    reason_content = "".join(
                        pm.reasoning
                        for pm in previous_delta_messages
                        if pm.reasoning is not None
                    )
                    yield _increment_sequence_number_and_return(
                        ResponseReasoningTextDoneEvent(
                            type="response.reasoning_text.done",
                            item_id=current_item_id,
                            sequence_number=-1,
                            output_index=current_output_index,
                            content_index=current_content_index,
                            text=reason_content,
                        )
                    )
                    current_content_index = 0
                    reasoning_item = ResponseReasoningItem(
                        type="reasoning",
                        content=[
                            ResponseReasoningTextContent(
                                text=reason_content,
                                type="reasoning_text",
                            ),
                        ],
                        status="completed",
                        id=current_item_id,
                        summary=[],
                    )
                    yield _increment_sequence_number_and_return(
                        ResponseOutputItemDoneEvent(
                            type="response.output_item.done",
                            sequence_number=-1,
                            output_index=current_output_index,
                            item=reasoning_item,
                        )
                    )
                    yield _increment_sequence_number_and_return(
                        ResponseOutputItemAddedEvent(
                            type="response.output_item.added",
                            sequence_number=-1,
                            output_index=current_output_index,
                            item=ResponseOutputMessage(
                                id=current_item_id,
                                type="message",
                                role="assistant",
                                content=[],
                                status="in_progress",
                            ),
                        )
                    )
                    current_output_index += 1
                    current_item_id = str(uuid.uuid4())
                    yield _increment_sequence_number_and_return(
                        ResponseContentPartAddedEvent(
                            type="response.content_part.added",
                            sequence_number=-1,
                            output_index=current_output_index,
                            item_id=current_item_id,
                            content_index=current_content_index,
                            part=ResponseOutputText(
                                type="output_text",
                                text="",
                                annotations=[],
                                logprobs=[],
                            ),
                        )
                    )
                    current_content_index += 1
                    # reset previous delta messages
                    previous_delta_messages = []

                if delta_message.reasoning is not None:
                    yield _increment_sequence_number_and_return(
                        ResponseReasoningTextDeltaEvent(
                            type="response.reasoning_text.delta",
                            sequence_number=-1,
                            content_index=current_content_index,
                            output_index=current_output_index,
                            item_id=current_item_id,
                            delta=delta_message.reasoning,
                        )
                    )
                elif delta_message.content is not None:
                    yield _increment_sequence_number_and_return(
                        ResponseTextDeltaEvent(
                            type="response.output_text.delta",
                            sequence_number=-1,
                            content_index=current_content_index,
                            output_index=current_output_index,
                            item_id=current_item_id,
                            delta=delta_message.content,
                            logprobs=(
                                self._create_stream_response_logprobs(
                                    token_ids=output.token_ids,
                                    logprobs=output.logprobs,
                                    tokenizer=tokenizer,
                                    top_logprobs=request.top_logprobs,
                                )
                                if request.is_include_output_logprobs()
                                else []
                            ),
                        )
                    )
                current_content_index += 1

                previous_delta_messages.append(delta_message)
        if previous_delta_messages:
            if previous_delta_messages[-1].reasoning is not None:
                reason_content = "".join(
                    pm.reasoning
                    for pm in previous_delta_messages
                    if pm.reasoning is not None
                )
                yield _increment_sequence_number_and_return(
                    ResponseReasoningTextDoneEvent(
                        type="response.reasoning_text.done",
                        item_id=current_item_id,
                        sequence_number=-1,
                        output_index=current_output_index,
                        content_index=current_content_index,
                        text=reason_content,
                    )
                )
                current_content_index += 1
                reasoning_item = ResponseReasoningItem(
                    type="reasoning",
                    content=[
                        ResponseReasoningTextContent(
                            text=reason_content,
                            type="reasoning_text",
                        ),
                    ],
                    status="completed",
                    id=current_item_id,
                    summary=[],
                )
                yield _increment_sequence_number_and_return(
                    ResponseOutputItemDoneEvent(
                        type="response.output_item.done",
                        sequence_number=-1,
                        output_index=current_output_index,
                        item=reasoning_item,
                    )
                )
            elif previous_delta_messages[-1].content is not None:
                final_content = "".join(
                    pm.content
                    for pm in previous_delta_messages
                    if pm.content is not None
                )
                yield _increment_sequence_number_and_return(
                    ResponseTextDoneEvent(
                        type="response.output_text.done",
                        sequence_number=-1,
                        output_index=current_output_index,
                        content_index=current_content_index,
                        text=final_content,
                        logprobs=[],
                        item_id=current_item_id,
                    )
                )
                current_content_index += 1
                part = ResponseOutputText(
                    text=final_content,
                    type="output_text",
                    annotations=[],
                )
                yield _increment_sequence_number_and_return(
                    ResponseContentPartDoneEvent(
                        type="response.content_part.done",
                        sequence_number=-1,
                        item_id=current_item_id,
                        output_index=current_output_index,
                        content_index=current_content_index,
                        part=part,
                    )
                )
                current_content_index += 1
                item = ResponseOutputMessage(
                    type="message",
                    role="assistant",
                    content=[
                        part,
                    ],
                    status="completed",
                    id=current_item_id,
                    summary=[],
                )
                yield _increment_sequence_number_and_return(
                    ResponseOutputItemDoneEvent(
                        type="response.output_item.done",
                        sequence_number=-1,
                        output_index=current_output_index,
                        item=item,
                    )
                )

    async def _process_harmony_streaming_events(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[ConversationContext | None],
        context: ConversationContext,
        model_name: str,
        tokenizer: TokenizerLike,
        request_metadata: RequestResponseMetadata,
        created_time: int,
        _increment_sequence_number_and_return: Callable[
            [StreamingResponsesResponse], StreamingResponsesResponse
        ],
    ) -> AsyncGenerator[StreamingResponsesResponse, None]:
        state = HarmonyStreamingState()

        async for ctx in result_generator:
            assert isinstance(ctx, StreamingHarmonyContext)

            # finish_reason='error' indicates a retryable error
            self._raise_if_error(ctx.finish_reason, request.request_id)

            if ctx.is_expecting_start():
                if len(ctx.parser.messages) > 0:
                    previous_item = ctx.parser.messages[-1]
                    for event in emit_previous_item_done_events(previous_item, state):
                        yield _increment_sequence_number_and_return(event)
                state.reset_for_new_item()

            # Stream the output of a harmony message
            for event in emit_content_delta_events(ctx, state):
                yield _increment_sequence_number_and_return(event)

            # Stream tool call outputs
            for event in emit_tool_action_events(ctx, state, self.tool_server):
                yield _increment_sequence_number_and_return(event)

    async def responses_stream_generator(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[ConversationContext | None],
        context: ConversationContext,
        model_name: str,
        tokenizer: TokenizerLike,
        request_metadata: RequestResponseMetadata,
        created_time: int | None = None,
    ) -> AsyncGenerator[StreamingResponsesResponse, None]:
        # TODO:
        # 1. Handle disconnect

        created_time = created_time or int(time.time())

        sequence_number = 0

        def _increment_sequence_number_and_return(
            event: StreamingResponsesResponse,
        ) -> StreamingResponsesResponse:
            nonlocal sequence_number
            # Set sequence_number if the event has this attribute
            if hasattr(event, "sequence_number"):
                event.sequence_number = sequence_number
            sequence_number += 1
            return event

        async with AsyncExitStack() as exit_stack:
            if self.use_harmony:
                # TODO: in streaming, we noticed this bug:
                # https://github.com/vllm-project/vllm/issues/25697
                await self._initialize_tool_sessions(request, context, exit_stack)
                processer = self._process_harmony_streaming_events
            else:
                processer = self._process_simple_streaming_events
            # TODO Hanchen make sampling params to include the structural tag

            initial_response = ResponsesResponse.from_request(
                request,
                sampling_params,
                model_name=model_name,
                created_time=created_time,
                output=[],
                status="in_progress",
                usage=None,
            ).model_dump()
            yield _increment_sequence_number_and_return(
                ResponseCreatedEvent(
                    type="response.created",
                    sequence_number=-1,
                    response=initial_response,
                )
            )
            yield _increment_sequence_number_and_return(
                ResponseInProgressEvent(
                    type="response.in_progress",
                    sequence_number=-1,
                    response=initial_response,
                )
            )

            try:
                async for event_data in processer(
                    request,
                    sampling_params,
                    result_generator,
                    context,
                    model_name,
                    tokenizer,
                    request_metadata,
                    created_time,
                    _increment_sequence_number_and_return,
                ):
                    yield event_data
            except GenerationError as e:
                error_json = self._convert_generation_error_to_streaming_response(e)
                yield _increment_sequence_number_and_return(
                    TypeAdapter(StreamingResponsesResponse).validate_json(error_json)
                )
                return

            async def empty_async_generator():
                # A hack to trick Python to think this is a generator but
                # in fact it immediately returns.
                if False:
                    yield

            final_response = await self.responses_full_generator(
                request,
                sampling_params,
                empty_async_generator(),
                context,
                model_name,
                tokenizer,
                request_metadata,
                created_time=created_time,
            )
            yield _increment_sequence_number_and_return(
                ResponseCompletedEvent(
                    type="response.completed",
                    sequence_number=-1,
                    response=final_response,
                )
            )

_topk_logprobs

_topk_logprobs(
    logprobs: dict[int, Logprob],
    top_logprobs: int,
    tokenizer: TokenizerLike,
) -> list[LogprobTopLogprob]

Returns the top-k logprobs from the logprobs dictionary.

Source code in vllm/entrypoints/openai/responses/serving.py
def _topk_logprobs(
    self,
    logprobs: dict[int, SampleLogprob],
    top_logprobs: int,
    tokenizer: TokenizerLike,
) -> list[LogprobTopLogprob]:
    """Returns the top-k logprobs from the logprobs dictionary."""
    out = []
    for i, (token_id, _logprob) in enumerate(logprobs.items()):
        if i >= top_logprobs:
            break
        text = self._get_decoded_token(
            logprob=_logprob,
            token_id=token_id,
            tokenizer=tokenizer,
            return_as_token_id=self.return_tokens_as_token_ids,
        )
        out.append(
            LogprobTopLogprob(
                token=text,
                logprob=max(_logprob.logprob, -9999.0),
                bytes=list(text.encode("utf-8", errors="replace")),
            )
        )
    return out

_validate_generator_input

_validate_generator_input(
    engine_prompt: ProcessorInputs,
) -> ErrorResponse | None

Add validations to the input to the generator here.

Source code in vllm/entrypoints/openai/responses/serving.py
def _validate_generator_input(
    self,
    engine_prompt: ProcessorInputs,
) -> ErrorResponse | None:
    """Add validations to the input to the generator here."""
    prompt_len = self._extract_prompt_len(engine_prompt)
    max_model_len = self.model_config.max_model_len

    if prompt_len >= max_model_len:
        error_message = (
            f"The engine prompt length {prompt_len} "
            f"exceeds the max_model_len {max_model_len}. "
            "Please reduce prompt."
        )
        return self.create_error_response(
            err_type="invalid_request_error",
            message=error_message,
            status_code=HTTPStatus.BAD_REQUEST,
            param="input",
        )

    return None

_extract_allowed_tools_from_mcp_requests

_extract_allowed_tools_from_mcp_requests(
    tools: list[Tool],
) -> dict[str, list[str] | None]

Extract allowed_tools mapping from MCP tool requests.

Returns a dictionary mapping server_label to allowed_tools list. Handles both list format and McpAllowedToolsMcpToolFilter object format.

Special handling: - If allowed_tools is None, returns None (allows all tools) - If allowed_tools contains "*", returns None (allows all tools) - Otherwise, returns the list of specific tool names

This function can be reused for both harmony and non-harmony MCP calls.

Source code in vllm/entrypoints/openai/responses/serving.py
def _extract_allowed_tools_from_mcp_requests(
    tools: list[Tool],
) -> dict[str, list[str] | None]:
    """
    Extract allowed_tools mapping from MCP tool requests.

    Returns a dictionary mapping server_label to allowed_tools list.
    Handles both list format and McpAllowedToolsMcpToolFilter object format.

    Special handling:
    - If allowed_tools is None, returns None (allows all tools)
    - If allowed_tools contains "*", returns None (allows all tools)
    - Otherwise, returns the list of specific tool names

    This function can be reused for both harmony and non-harmony MCP calls.
    """
    allowed_tools_map: dict[str, list[str] | None] = {}
    for tool in tools:
        if not isinstance(tool, Mcp):
            continue

        # allowed_tools can be a list or an object with tool_names
        # Extract the actual list of tool names
        allowed_tools_val = None
        if tool.allowed_tools is not None:
            if isinstance(tool.allowed_tools, list):
                allowed_tools_val = tool.allowed_tools
            elif hasattr(tool.allowed_tools, "tool_names"):
                # It's an McpAllowedToolsMcpToolFilter object
                allowed_tools_val = tool.allowed_tools.tool_names

        # Normalize "*" to None (both mean "allow all tools")
        if allowed_tools_val is not None and "*" in allowed_tools_val:
            allowed_tools_val = None

        allowed_tools_map[tool.server_label] = allowed_tools_val
    return allowed_tools_map