Skip to content

vllm.v1.attention.backends.rocm_aiter_fa

Attention layer with AiterFlashAttention.

AiterFlashAttentionImpl

Bases: AttentionImpl

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
class AiterFlashAttentionImpl(AttentionImpl):
    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: int,
        alibi_slopes: list[float] | None,
        sliding_window: int | None,
        kv_cache_dtype: str,
        logits_soft_cap: float | None = None,
        attn_type: AttentionType = AttentionType.DECODER,
        kv_sharing_target_layer_name: int | None = None,
    ) -> None:
        self.num_heads = num_heads
        self.head_size = head_size
        self.scale = float(scale)
        self.num_kv_heads = num_kv_heads
        if alibi_slopes is not None:
            alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
        self.alibi_slopes = alibi_slopes
        if sliding_window is None:
            self.sliding_window = (-1, -1)
        else:
            self.sliding_window = (sliding_window - 1, 0)
        self.kv_cache_dtype = kv_cache_dtype
        if logits_soft_cap is None:
            # In flash-attn, setting logits_soft_cap as 0 means no soft cap.
            logits_soft_cap = 0.0
        self.logits_soft_cap = logits_soft_cap
        self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

        assert self.num_heads % self.num_kv_heads == 0
        self.num_queries_per_kv = self.num_heads // self.num_kv_heads

        if attn_type not in [AttentionType.DECODER, AttentionType.ENCODER_DECODER]:
            raise NotImplementedError(
                "Encoder self-attention is not implemented for FlashAttentionImpl"
            )

    def extend_for_sliding_window(
        self,
        attn_metadata: AiterFlashAttentionMetadata,
        query: torch.Tensor,
        key_cache,
        value_cache,
        output: torch.Tensor,
        cu_seqlens_q: torch.Tensor,
        max_seqlen_q: int,
        block_table: torch.Tensor,
        k_scale: float,
        v_scale: float,
    ):
        assert attn_metadata.extend_metadata is not None
        assert attn_metadata.extend_metadata.chunk_context_metadata is not None
        chunked_metadata = attn_metadata.extend_metadata.chunk_context_metadata
        swa_metadata = chunked_metadata.swa_metadata
        assert swa_metadata is not None
        swa_cu_seqlens = swa_metadata.swa_cu_seqlens
        swa_seq_starts = swa_metadata.swa_seq_starts
        swa_token_to_batch = swa_metadata.swa_token_to_batch
        swa_max_seqlens = swa_metadata.swa_max_seqlens
        swa_total_tokens = swa_metadata.swa_total_tokens
        key_fetched, value_fetched = (
            swa_metadata.swa_workspace[0],
            swa_metadata.swa_workspace[1],
        )
        cp_mha_gather_cache(
            key_cache=key_cache,
            value_cache=value_cache,
            key=key_fetched,
            value=value_fetched,
            block_tables=block_table,
            k_scales=k_scale,
            v_scales=v_scale,
            cu_seqlens_kv=swa_cu_seqlens,
            token_to_batch=swa_token_to_batch,
            seq_starts=swa_seq_starts,
            dequant=self.kv_cache_dtype.startswith("fp8"),
            kv_cache_layout="NHD",
            total_tokens=swa_total_tokens,
        )

        rocm_aiter_ops.flash_attn_varlen_func(
            q=query,
            k=key_fetched,
            v=value_fetched,
            cu_seqlens_q=cu_seqlens_q,
            cu_seqlens_k=swa_cu_seqlens,
            max_seqlen_q=max_seqlen_q,
            max_seqlen_k=swa_max_seqlens,
            min_seqlen_q=1,
            dropout_p=0.0,
            softmax_scale=self.scale,
            causal=True,
            window_size=self.sliding_window,
            alibi_slopes=self.alibi_slopes,
            return_lse=False,
            out=output,
        )

    def extend_forward(
        self,
        attn_metadata: AiterFlashAttentionMetadata,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        key_cache: torch.Tensor,
        value_cache: torch.Tensor,
        output: torch.Tensor,
        cu_seqlens_q: torch.Tensor,
        max_seqlen_q: int,
        max_seqlen_k: int,
        min_seqlen_q: int,
        block_table: torch.Tensor,
        slot_mapping: torch.Tensor,
        k_scale: torch.Tensor,
        v_scale: torch.Tensor,
    ):
        if self.sliding_window[0] != -1:
            self.extend_for_sliding_window(
                attn_metadata,
                query,
                key_cache,
                value_cache,
                output,
                cu_seqlens_q,
                max_seqlen_q,
                block_table,
                k_scale,
                v_scale,
            )
            return
        out, lse = rocm_aiter_ops.flash_attn_varlen_func(
            q=query,
            k=key,
            v=value,
            cu_seqlens_q=cu_seqlens_q,
            cu_seqlens_k=cu_seqlens_q,
            max_seqlen_q=max_seqlen_q,
            max_seqlen_k=max_seqlen_q,
            min_seqlen_q=min_seqlen_q,
            dropout_p=0.0,
            softmax_scale=self.scale,
            causal=True,
            window_size=self.sliding_window,
            alibi_slopes=self.alibi_slopes,
            return_lse=True,
        )
        assert attn_metadata.extend_metadata is not None
        chunk_context_metadata = attn_metadata.extend_metadata.chunk_context_metadata
        num_chunks = chunk_context_metadata.num_chunks
        workspace = chunk_context_metadata.workspace
        cu_seqlens_kv = chunk_context_metadata.cu_seq_lens_chunk
        max_seqlens = chunk_context_metadata.max_seq_lens
        chunk_starts = chunk_context_metadata.chunk_starts
        token_to_batch = chunk_context_metadata.token_to_batch
        total_token_per_batch = chunk_context_metadata.total_token_per_batch
        key_fetched, value_fetched = workspace[0], workspace[1]
        chunked_output = None
        chunked_lse = None
        for chunk_idx in range(num_chunks):
            cp_mha_gather_cache(
                key_cache=key_cache,
                value_cache=value_cache,
                key=key_fetched,
                value=value_fetched,
                block_tables=block_table,
                k_scales=k_scale,
                v_scales=v_scale,
                cu_seqlens_kv=cu_seqlens_kv[chunk_idx],
                token_to_batch=token_to_batch[chunk_idx],
                seq_starts=chunk_starts[chunk_idx],
                dequant=self.kv_cache_dtype.startswith("fp8"),
                kv_cache_layout="SHUFFLE"
                if rocm_aiter_ops.is_shuffle_kv_cache_enabled()
                else "NHD",
                total_tokens=total_token_per_batch[chunk_idx],
            )

            suf_out, suf_lse = rocm_aiter_ops.flash_attn_varlen_func(
                q=query,
                k=key_fetched,
                v=value_fetched,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_kv[chunk_idx],
                max_seqlen_q=max_seqlen_q,
                max_seqlen_k=max_seqlens[chunk_idx],
                min_seqlen_q=min_seqlen_q,
                dropout_p=0.0,
                softmax_scale=self.scale,
                causal=False,
                window_size=self.sliding_window,
                alibi_slopes=self.alibi_slopes,
                return_lse=True,
            )
            if chunked_output is None:
                chunked_output = suf_out
                chunked_lse = suf_lse
            else:
                tmp_output = torch.empty_like(out)
                tmp_lse = torch.empty_like(lse)
                merge_attn_states(
                    output=tmp_output,
                    output_lse=tmp_lse,
                    prefix_output=chunked_output,
                    prefix_lse=chunked_lse,
                    suffix_output=suf_out,
                    suffix_lse=suf_lse,
                )
                chunked_output = tmp_output
                chunked_lse = tmp_lse

        merge_attn_states(
            output=output,
            prefix_output=chunked_output,
            prefix_lse=chunked_lse,
            suffix_output=out,
            suffix_lse=lse,
        )

    def forward(
        self,
        layer: torch.nn.Module,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AiterFlashAttentionMetadata,
        output: torch.Tensor | None = None,
        output_scale: torch.Tensor | None = None,
        output_block_scale: torch.Tensor | None = None,
    ) -> torch.Tensor:
        """Forward pass with AiterFlashAttention.

        Args:
            query: shape = [num_tokens, num_heads, head_size]
            key: shape = [num_tokens, num_kv_heads, head_size]
            value: shape = [num_tokens, num_kv_heads, head_size]
            kv_cache: shape =
                [2, num_blocks, block_size, num_kv_heads, head_size]
            attn_metadata: Metadata for attention.
        Returns:
            shape = [num_tokens, num_heads * head_size]
        NOTE: FP8 quantization, flash-attn expect the size of
              {q,k,v}_descale to be (num_sequences, num_kv_heads).
              We use torch's .expand() to avoid duplicating values
        """
        assert output is not None, "Output tensor must be provided."

        if output_scale is not None or output_block_scale is not None:
            raise NotImplementedError(
                "fused output quantization is not yet supported for FlashAttentionImpl"
            )

        if attn_metadata is None:
            # Profiling run.
            return output.fill_(0)

        # IMPORTANT!
        # NOTE(woosuk): With piece-wise CUDA graphs, this method is
        # executed in eager-mode PyTorch. Thus, we need to be careful
        # about any CPU overhead in this method. For example, `view`
        # and `slice` (or `[:n]`) operations are surprisingly slow even
        # in the case they do not invoke any GPU ops.
        # Minimize the PyTorch ops in this method as much as possible.
        # Whenever making a change in this method, please benchmark the
        # performance to make sure it does not introduce any overhead.
        num_actual_tokens = attn_metadata.num_actual_tokens
        key_cache, value_cache = kv_cache.unbind(0)

        if self.kv_cache_dtype.startswith("fp8"):
            key_cache = key_cache.view(current_platform.fp8_dtype())
            value_cache = value_cache.view(current_platform.fp8_dtype())

        # decode:extend:prefill
        query = query[:num_actual_tokens]
        if key is not None:
            key = key[:num_actual_tokens]
        if value is not None:
            value = value[:num_actual_tokens]

        output_actual_tokens = output[:num_actual_tokens]

        num_decodes = attn_metadata.num_decodes
        num_prefills = attn_metadata.num_prefills
        num_extends = attn_metadata.num_extends

        num_decode_tokens = attn_metadata.num_decode_tokens
        num_extend_tokens = attn_metadata.num_extend_tokens
        if not attn_metadata.use_cascade:
            # calculate for pure prefills
            if num_prefills > 0:
                assert attn_metadata.prefill_metadata is not None

                prefill_query = query[num_decode_tokens + num_extend_tokens :]
                prefill_key = key[num_decode_tokens + num_extend_tokens :]
                prefill_value = value[num_decode_tokens + num_extend_tokens :]

                rocm_aiter_ops.flash_attn_varlen_func(
                    q=prefill_query,
                    k=prefill_key,
                    v=prefill_value,
                    cu_seqlens_q=attn_metadata.prefill_metadata.query_start_loc,
                    cu_seqlens_k=attn_metadata.prefill_metadata.query_start_loc,
                    max_seqlen_q=attn_metadata.prefill_metadata.max_query_len,
                    max_seqlen_k=attn_metadata.prefill_metadata.max_seq_len,
                    min_seqlen_q=1,
                    dropout_p=0.0,
                    softmax_scale=self.scale,
                    causal=True,
                    window_size=self.sliding_window,
                    alibi_slopes=self.alibi_slopes,
                    out=output_actual_tokens[num_decode_tokens + num_extend_tokens :],
                )

            # calculate for extends
            if num_extends > 0:
                assert attn_metadata.extend_metadata is not None
                extend_tokens_slice = slice(
                    num_decode_tokens, num_decode_tokens + num_extend_tokens
                )
                extend_querys = query[extend_tokens_slice]
                extend_keys = key[extend_tokens_slice]
                extend_values = value[extend_tokens_slice]
                extend_outputs = output[extend_tokens_slice]
                k_scale = layer._k_scale
                v_scale = layer._v_scale
                if rocm_aiter_ops.is_shuffle_kv_cache_enabled():
                    k_scale = attn_metadata.k_scale
                    v_scale = attn_metadata.v_scale
                self.extend_forward(
                    attn_metadata=attn_metadata,
                    query=extend_querys,
                    key=extend_keys,
                    value=extend_values,
                    key_cache=key_cache,
                    value_cache=value_cache,
                    output=extend_outputs,
                    cu_seqlens_q=attn_metadata.extend_metadata.query_start_loc,
                    max_seqlen_q=attn_metadata.extend_metadata.max_query_len,
                    max_seqlen_k=attn_metadata.extend_metadata.max_seq_len,
                    min_seqlen_q=1,
                    block_table=attn_metadata.block_table[
                        num_decodes : num_decodes + num_extends
                    ],
                    slot_mapping=attn_metadata.slot_mapping[
                        num_decodes : num_decodes + num_extends
                    ],
                    k_scale=k_scale,
                    v_scale=v_scale,
                )

            # calculate for decodes
            if num_decodes > 0:
                assert attn_metadata.decode_metadata is not None
                decode_max_query_len = attn_metadata.decode_metadata.max_query_len

                # Use unified_attention for speculative decoding (multi-token)
                # or when sliding window is enabled
                if self.sliding_window[0] != -1 or decode_max_query_len > 1:
                    assert not rocm_aiter_ops.is_shuffle_kv_cache_enabled(), (
                        "Shuffle KV cache layout is not supported with sliding "
                        "window or speculative decoding (multi-token decode)."
                    )
                    from aiter.ops.triton.unified_attention import (
                        unified_attention,
                    )

                    descale_shape = (
                        attn_metadata.query_start_loc[:num_decodes].shape[0] - 1,
                        key_cache.shape[2],
                    )
                    unified_attention(
                        q=query[:num_decode_tokens],
                        k=key_cache,
                        v=value_cache,
                        out=output[:num_decode_tokens],
                        cu_seqlens_q=attn_metadata.query_start_loc[:num_decodes],
                        max_seqlen_q=decode_max_query_len,
                        seqused_k=attn_metadata.seq_lens[:num_decodes],
                        max_seqlen_k=attn_metadata.max_seq_len,
                        softmax_scale=self.scale,
                        causal=True,
                        alibi_slopes=self.alibi_slopes,
                        window_size=self.sliding_window,
                        block_table=attn_metadata.block_table[:num_decodes],
                        softcap=self.logits_soft_cap,
                        q_descale=None,
                        k_descale=layer._k_scale.expand(descale_shape),
                        v_descale=layer._v_scale.expand(descale_shape),
                    )
                    return

                # The ll4mi kernel in paged_attention_v1 requires
                # HEAD_SIZE >= 16 * NWARPS (= 64 on ROCm with NWARPS=4).
                # For smaller head sizes or sliding window attention,
                # fall back to the unified_attention triton kernel which
                # handles both correctly.
                _MIN_HEAD_SIZE_FOR_LL4MI = 64
                use_unified_attention = self.head_size < _MIN_HEAD_SIZE_FOR_LL4MI

                if use_unified_attention:
                    assert not rocm_aiter_ops.is_shuffle_kv_cache_enabled(), (
                        "unified_attention fallback with shuffle layout "
                        "is not supported yet."
                    )
                    from aiter.ops.triton.unified_attention import (
                        unified_attention,
                    )

                    decode_cu_seqlens_q = attn_metadata.query_start_loc[
                        : num_decodes + 1
                    ]
                    descale_shape = (
                        num_decodes,
                        key_cache.shape[2],
                    )
                    unified_attention(
                        q=query[:num_decode_tokens],
                        k=key_cache,
                        v=value_cache,
                        out=output[:num_decode_tokens],
                        cu_seqlens_q=decode_cu_seqlens_q,
                        max_seqlen_q=1,
                        seqused_k=attn_metadata.seq_lens[:num_decodes],
                        max_seqlen_k=attn_metadata.max_seq_len,
                        softmax_scale=self.scale,
                        causal=True,
                        alibi_slopes=self.alibi_slopes,
                        window_size=self.sliding_window,
                        block_table=attn_metadata.block_table[:num_decodes],
                        softcap=self.logits_soft_cap,
                        q_descale=None,
                        k_descale=layer._k_scale.expand(descale_shape),
                        v_descale=layer._v_scale.expand(descale_shape),
                    )
                elif rocm_aiter_ops.is_shuffle_kv_cache_enabled():
                    num_blocks, block_size, num_kv_heads, head_size = key_cache.shape
                    x = 16 // key_cache.element_size()
                    k_cache_template = torch.empty(
                        [num_blocks, num_kv_heads, head_size // x, block_size, x],
                        dtype=key_cache.dtype,
                        device="meta",
                    )
                    v_cache_template = torch.empty(
                        [num_blocks, num_kv_heads, block_size // x, head_size, x],
                        dtype=value_cache.dtype,
                        device="meta",
                    )
                    new_key_cache = key_cache.view_as(k_cache_template)
                    new_value_cache = value_cache.view_as(v_cache_template)
                    rocm_aiter_ops.pa_fwd_asm(
                        Q=query[:num_decode_tokens],
                        K=new_key_cache,
                        V=new_value_cache,
                        block_tables=attn_metadata.block_table[:num_decodes],
                        context_lens=attn_metadata.seq_lens[:num_decodes],
                        block_tables_stride0=attn_metadata.block_table[
                            :num_decodes
                        ].stride(0),
                        K_QScale=attn_metadata.k_scale,
                        V_QScale=attn_metadata.v_scale,
                        out_=output[:num_decode_tokens],
                    )
                else:
                    _, num_heads, head_size = query.shape
                    nbytes_per_qo_elem = torch.finfo(query.dtype).bits // 8
                    num_seqs = attn_metadata.seq_lens.shape[0]
                    max_num_partitions = (
                        attn_metadata.max_seq_len + _PARTITION_SIZE_ROCM - 1
                    ) // _PARTITION_SIZE_ROCM

                    workspace_buffer = torch.empty(
                        (num_seqs * num_heads * max_num_partitions * head_size)
                        * nbytes_per_qo_elem
                        + 2 * (num_seqs * num_heads * max_num_partitions) * 4,
                        dtype=torch.uint8,
                        device=output.device,
                    )

                    # import so that aiter register the op to the namespace of
                    # torch.ops.aiter
                    import aiter  # noqa: F401

                    torch.ops.aiter.paged_attention_v1(
                        output[:num_decode_tokens],
                        workspace_buffer,
                        query[:num_decode_tokens],
                        key_cache,
                        value_cache,
                        self.scale,
                        attn_metadata.block_table[:num_decodes],
                        attn_metadata.query_start_loc[:num_decodes],
                        attn_metadata.seq_lens[:num_decodes],
                        attn_metadata.max_seq_len,
                        self.alibi_slopes,
                        self.kv_cache_dtype,
                        "NHD",
                        self.logits_soft_cap,
                        layer._k_scale,
                        layer._v_scale,
                        None,
                        _PARTITION_SIZE_ROCM,
                        1,
                        self.sliding_window[0] + 1,
                    )
        else:
            raise NotImplementedError(
                "Cascade attention is not implemented for ROCM AITER"
            )

        return output

    def do_kv_cache_update(
        self,
        layer: Attention,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        slot_mapping: torch.Tensor,
    ):
        attn_metadata, _, _ = get_attention_context(layer.layer_name)
        if attn_metadata is None:
            # Profiling run.
            return

        key_cache, value_cache = kv_cache.unbind(0)

        # key and value may be None in the case of cross attention. They are
        # calculated once based on the output from the encoder and then cached
        # in KV cache.
        if self.kv_cache_dtype.startswith("fp8"):
            key_cache = key_cache.view(current_platform.fp8_dtype())
            value_cache = value_cache.view(current_platform.fp8_dtype())
        if (
            self.kv_sharing_target_layer_name is None
            and key is not None
            and value is not None
        ):
            # Reshape the input keys and values and store them in the cache.
            # Skip this if sharing KV cache with an earlier attention layer.
            # NOTE(woosuk): Here, key and value are padded while slot_mapping
            # is not padded. However, we don't need to do
            # key[:num_actual_tokens] and value[:num_actual_tokens] because
            # the reshape_and_cache_flash op uses the slot_mapping's shape
            # to determine the number of actual tokens.
            if rocm_aiter_ops.is_shuffle_kv_cache_enabled():
                # We may calculate per token quant scale in
                # reshape_and_cache_shuffle_triton which might differ from
                # vllm's style when shuffle layout is used.
                k_scale = attn_metadata.k_scale
                v_scale = attn_metadata.v_scale
                assert k_scale is not None and v_scale is not None, (
                    "k_scale and v_scale are required for shuffled update"
                )
                reshape_and_cache_shuffle_triton(
                    key,
                    value,
                    key_cache,
                    value_cache,
                    slot_mapping,
                    self.kv_cache_dtype,
                    k_scale,
                    v_scale,
                )
            else:
                torch.ops._C_cache_ops.reshape_and_cache_flash(
                    key,
                    value,
                    key_cache,
                    value_cache,
                    slot_mapping,
                    self.kv_cache_dtype,
                    layer._k_scale,
                    layer._v_scale,
                )

forward

forward(
    layer: Module,
    query: Tensor,
    key: Tensor,
    value: Tensor,
    kv_cache: Tensor,
    attn_metadata: AiterFlashAttentionMetadata,
    output: Tensor | None = None,
    output_scale: Tensor | None = None,
    output_block_scale: Tensor | None = None,
) -> Tensor

Forward pass with AiterFlashAttention.

Parameters:

Name Type Description Default
query Tensor

shape = [num_tokens, num_heads, head_size]

required
key Tensor

shape = [num_tokens, num_kv_heads, head_size]

required
value Tensor

shape = [num_tokens, num_kv_heads, head_size]

required
kv_cache Tensor

shape = [2, num_blocks, block_size, num_kv_heads, head_size]

required
attn_metadata AiterFlashAttentionMetadata

Metadata for attention.

required

Returns: shape = [num_tokens, num_heads * head_size] NOTE: FP8 quantization, flash-attn expect the size of {q,k,v}_descale to be (num_sequences, num_kv_heads). We use torch's .expand() to avoid duplicating values

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def forward(
    self,
    layer: torch.nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: torch.Tensor,
    attn_metadata: AiterFlashAttentionMetadata,
    output: torch.Tensor | None = None,
    output_scale: torch.Tensor | None = None,
    output_block_scale: torch.Tensor | None = None,
) -> torch.Tensor:
    """Forward pass with AiterFlashAttention.

    Args:
        query: shape = [num_tokens, num_heads, head_size]
        key: shape = [num_tokens, num_kv_heads, head_size]
        value: shape = [num_tokens, num_kv_heads, head_size]
        kv_cache: shape =
            [2, num_blocks, block_size, num_kv_heads, head_size]
        attn_metadata: Metadata for attention.
    Returns:
        shape = [num_tokens, num_heads * head_size]
    NOTE: FP8 quantization, flash-attn expect the size of
          {q,k,v}_descale to be (num_sequences, num_kv_heads).
          We use torch's .expand() to avoid duplicating values
    """
    assert output is not None, "Output tensor must be provided."

    if output_scale is not None or output_block_scale is not None:
        raise NotImplementedError(
            "fused output quantization is not yet supported for FlashAttentionImpl"
        )

    if attn_metadata is None:
        # Profiling run.
        return output.fill_(0)

    # IMPORTANT!
    # NOTE(woosuk): With piece-wise CUDA graphs, this method is
    # executed in eager-mode PyTorch. Thus, we need to be careful
    # about any CPU overhead in this method. For example, `view`
    # and `slice` (or `[:n]`) operations are surprisingly slow even
    # in the case they do not invoke any GPU ops.
    # Minimize the PyTorch ops in this method as much as possible.
    # Whenever making a change in this method, please benchmark the
    # performance to make sure it does not introduce any overhead.
    num_actual_tokens = attn_metadata.num_actual_tokens
    key_cache, value_cache = kv_cache.unbind(0)

    if self.kv_cache_dtype.startswith("fp8"):
        key_cache = key_cache.view(current_platform.fp8_dtype())
        value_cache = value_cache.view(current_platform.fp8_dtype())

    # decode:extend:prefill
    query = query[:num_actual_tokens]
    if key is not None:
        key = key[:num_actual_tokens]
    if value is not None:
        value = value[:num_actual_tokens]

    output_actual_tokens = output[:num_actual_tokens]

    num_decodes = attn_metadata.num_decodes
    num_prefills = attn_metadata.num_prefills
    num_extends = attn_metadata.num_extends

    num_decode_tokens = attn_metadata.num_decode_tokens
    num_extend_tokens = attn_metadata.num_extend_tokens
    if not attn_metadata.use_cascade:
        # calculate for pure prefills
        if num_prefills > 0:
            assert attn_metadata.prefill_metadata is not None

            prefill_query = query[num_decode_tokens + num_extend_tokens :]
            prefill_key = key[num_decode_tokens + num_extend_tokens :]
            prefill_value = value[num_decode_tokens + num_extend_tokens :]

            rocm_aiter_ops.flash_attn_varlen_func(
                q=prefill_query,
                k=prefill_key,
                v=prefill_value,
                cu_seqlens_q=attn_metadata.prefill_metadata.query_start_loc,
                cu_seqlens_k=attn_metadata.prefill_metadata.query_start_loc,
                max_seqlen_q=attn_metadata.prefill_metadata.max_query_len,
                max_seqlen_k=attn_metadata.prefill_metadata.max_seq_len,
                min_seqlen_q=1,
                dropout_p=0.0,
                softmax_scale=self.scale,
                causal=True,
                window_size=self.sliding_window,
                alibi_slopes=self.alibi_slopes,
                out=output_actual_tokens[num_decode_tokens + num_extend_tokens :],
            )

        # calculate for extends
        if num_extends > 0:
            assert attn_metadata.extend_metadata is not None
            extend_tokens_slice = slice(
                num_decode_tokens, num_decode_tokens + num_extend_tokens
            )
            extend_querys = query[extend_tokens_slice]
            extend_keys = key[extend_tokens_slice]
            extend_values = value[extend_tokens_slice]
            extend_outputs = output[extend_tokens_slice]
            k_scale = layer._k_scale
            v_scale = layer._v_scale
            if rocm_aiter_ops.is_shuffle_kv_cache_enabled():
                k_scale = attn_metadata.k_scale
                v_scale = attn_metadata.v_scale
            self.extend_forward(
                attn_metadata=attn_metadata,
                query=extend_querys,
                key=extend_keys,
                value=extend_values,
                key_cache=key_cache,
                value_cache=value_cache,
                output=extend_outputs,
                cu_seqlens_q=attn_metadata.extend_metadata.query_start_loc,
                max_seqlen_q=attn_metadata.extend_metadata.max_query_len,
                max_seqlen_k=attn_metadata.extend_metadata.max_seq_len,
                min_seqlen_q=1,
                block_table=attn_metadata.block_table[
                    num_decodes : num_decodes + num_extends
                ],
                slot_mapping=attn_metadata.slot_mapping[
                    num_decodes : num_decodes + num_extends
                ],
                k_scale=k_scale,
                v_scale=v_scale,
            )

        # calculate for decodes
        if num_decodes > 0:
            assert attn_metadata.decode_metadata is not None
            decode_max_query_len = attn_metadata.decode_metadata.max_query_len

            # Use unified_attention for speculative decoding (multi-token)
            # or when sliding window is enabled
            if self.sliding_window[0] != -1 or decode_max_query_len > 1:
                assert not rocm_aiter_ops.is_shuffle_kv_cache_enabled(), (
                    "Shuffle KV cache layout is not supported with sliding "
                    "window or speculative decoding (multi-token decode)."
                )
                from aiter.ops.triton.unified_attention import (
                    unified_attention,
                )

                descale_shape = (
                    attn_metadata.query_start_loc[:num_decodes].shape[0] - 1,
                    key_cache.shape[2],
                )
                unified_attention(
                    q=query[:num_decode_tokens],
                    k=key_cache,
                    v=value_cache,
                    out=output[:num_decode_tokens],
                    cu_seqlens_q=attn_metadata.query_start_loc[:num_decodes],
                    max_seqlen_q=decode_max_query_len,
                    seqused_k=attn_metadata.seq_lens[:num_decodes],
                    max_seqlen_k=attn_metadata.max_seq_len,
                    softmax_scale=self.scale,
                    causal=True,
                    alibi_slopes=self.alibi_slopes,
                    window_size=self.sliding_window,
                    block_table=attn_metadata.block_table[:num_decodes],
                    softcap=self.logits_soft_cap,
                    q_descale=None,
                    k_descale=layer._k_scale.expand(descale_shape),
                    v_descale=layer._v_scale.expand(descale_shape),
                )
                return

            # The ll4mi kernel in paged_attention_v1 requires
            # HEAD_SIZE >= 16 * NWARPS (= 64 on ROCm with NWARPS=4).
            # For smaller head sizes or sliding window attention,
            # fall back to the unified_attention triton kernel which
            # handles both correctly.
            _MIN_HEAD_SIZE_FOR_LL4MI = 64
            use_unified_attention = self.head_size < _MIN_HEAD_SIZE_FOR_LL4MI

            if use_unified_attention:
                assert not rocm_aiter_ops.is_shuffle_kv_cache_enabled(), (
                    "unified_attention fallback with shuffle layout "
                    "is not supported yet."
                )
                from aiter.ops.triton.unified_attention import (
                    unified_attention,
                )

                decode_cu_seqlens_q = attn_metadata.query_start_loc[
                    : num_decodes + 1
                ]
                descale_shape = (
                    num_decodes,
                    key_cache.shape[2],
                )
                unified_attention(
                    q=query[:num_decode_tokens],
                    k=key_cache,
                    v=value_cache,
                    out=output[:num_decode_tokens],
                    cu_seqlens_q=decode_cu_seqlens_q,
                    max_seqlen_q=1,
                    seqused_k=attn_metadata.seq_lens[:num_decodes],
                    max_seqlen_k=attn_metadata.max_seq_len,
                    softmax_scale=self.scale,
                    causal=True,
                    alibi_slopes=self.alibi_slopes,
                    window_size=self.sliding_window,
                    block_table=attn_metadata.block_table[:num_decodes],
                    softcap=self.logits_soft_cap,
                    q_descale=None,
                    k_descale=layer._k_scale.expand(descale_shape),
                    v_descale=layer._v_scale.expand(descale_shape),
                )
            elif rocm_aiter_ops.is_shuffle_kv_cache_enabled():
                num_blocks, block_size, num_kv_heads, head_size = key_cache.shape
                x = 16 // key_cache.element_size()
                k_cache_template = torch.empty(
                    [num_blocks, num_kv_heads, head_size // x, block_size, x],
                    dtype=key_cache.dtype,
                    device="meta",
                )
                v_cache_template = torch.empty(
                    [num_blocks, num_kv_heads, block_size // x, head_size, x],
                    dtype=value_cache.dtype,
                    device="meta",
                )
                new_key_cache = key_cache.view_as(k_cache_template)
                new_value_cache = value_cache.view_as(v_cache_template)
                rocm_aiter_ops.pa_fwd_asm(
                    Q=query[:num_decode_tokens],
                    K=new_key_cache,
                    V=new_value_cache,
                    block_tables=attn_metadata.block_table[:num_decodes],
                    context_lens=attn_metadata.seq_lens[:num_decodes],
                    block_tables_stride0=attn_metadata.block_table[
                        :num_decodes
                    ].stride(0),
                    K_QScale=attn_metadata.k_scale,
                    V_QScale=attn_metadata.v_scale,
                    out_=output[:num_decode_tokens],
                )
            else:
                _, num_heads, head_size = query.shape
                nbytes_per_qo_elem = torch.finfo(query.dtype).bits // 8
                num_seqs = attn_metadata.seq_lens.shape[0]
                max_num_partitions = (
                    attn_metadata.max_seq_len + _PARTITION_SIZE_ROCM - 1
                ) // _PARTITION_SIZE_ROCM

                workspace_buffer = torch.empty(
                    (num_seqs * num_heads * max_num_partitions * head_size)
                    * nbytes_per_qo_elem
                    + 2 * (num_seqs * num_heads * max_num_partitions) * 4,
                    dtype=torch.uint8,
                    device=output.device,
                )

                # import so that aiter register the op to the namespace of
                # torch.ops.aiter
                import aiter  # noqa: F401

                torch.ops.aiter.paged_attention_v1(
                    output[:num_decode_tokens],
                    workspace_buffer,
                    query[:num_decode_tokens],
                    key_cache,
                    value_cache,
                    self.scale,
                    attn_metadata.block_table[:num_decodes],
                    attn_metadata.query_start_loc[:num_decodes],
                    attn_metadata.seq_lens[:num_decodes],
                    attn_metadata.max_seq_len,
                    self.alibi_slopes,
                    self.kv_cache_dtype,
                    "NHD",
                    self.logits_soft_cap,
                    layer._k_scale,
                    layer._v_scale,
                    None,
                    _PARTITION_SIZE_ROCM,
                    1,
                    self.sliding_window[0] + 1,
                )
    else:
        raise NotImplementedError(
            "Cascade attention is not implemented for ROCM AITER"
        )

    return output

AiterFlashAttentionMetadataBuilder

Bases: AttentionMetadataBuilder[AiterFlashAttentionMetadata]

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
class AiterFlashAttentionMetadataBuilder(
    AttentionMetadataBuilder[AiterFlashAttentionMetadata]
):
    _cudagraph_support = AttentionCGSupport.UNIFORM_BATCH

    def __init__(
        self,
        kv_cache_spec: AttentionSpec,
        layer_names: list[str],
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        super().__init__(kv_cache_spec, layer_names, vllm_config, device)

        self.model_config = vllm_config.model_config
        self.parallel_config = vllm_config.parallel_config
        self.cache_config = vllm_config.cache_config

        self.num_heads_q = self.model_config.get_num_attention_heads(
            self.parallel_config
        )
        self.num_heads_kv = self.model_config.get_num_kv_heads(self.parallel_config)
        self.headdim = self.model_config.get_head_size()
        self.block_size = kv_cache_spec.block_size
        # Sliding window size to be used with the AOT scheduler will be
        # populated on first build() call.
        self.aot_sliding_window: tuple[int, int] | None = None
        self.total_tokens: int = 0
        self._init_reorder_batch_threshold(1, supports_spec_as_decode=True)

        sliding_window_configs: set[tuple[int, int] | None] = set()
        layers = get_layers_from_vllm_config(self.vllm_config, Attention)
        for name, layer in layers.items():
            if name not in layer_names:
                continue
            assert isinstance(layer.impl, AiterFlashAttentionImpl), (
                "Aiter Flash Attention Metadata Builder can only be used "
                "with Aiter Flash Attention Impl."
            )
            sliding_window_configs.add(layer.impl.sliding_window)

        while len(sliding_window_configs) > 0:
            sliding_window_config = sliding_window_configs.pop()
            if sliding_window_config is not None and sliding_window_config[0] != -1:
                assert self.aot_sliding_window is None, (
                    "Aiter Flash ATTENTION can only support one valid sliding window!"
                )
                self.aot_sliding_window = sliding_window_config

        self.extend_workspace = torch.empty(
            [2, _CP_TOKENS_PER_ITER_ROCM, self.num_heads_kv, self.headdim],
            dtype=self.model_config.dtype,
            device=device,
        )
        self.scale = torch.tensor([1.0], dtype=torch.float, device=self.device)

    def build_for_cudagraph_capture(
        self, common_attn_metadata: CommonAttentionMetadata
    ):
        self.total_tokens = (
            self.model_config.max_model_len
            * self.vllm_config.scheduler_config.max_num_partial_prefills
        )
        res = self.build(common_prefix_len=0, common_attn_metadata=common_attn_metadata)
        self.total_tokens = 0
        return res

    def build(
        self,
        common_prefix_len: int,
        common_attn_metadata: CommonAttentionMetadata,
        fast_build: bool = False,
    ) -> "AiterFlashAttentionMetadata":
        assert self.reorder_batch_threshold is not None
        split_ret = split_decodes_prefills_and_extends(
            common_attn_metadata,
            decode_threshold=self.reorder_batch_threshold,
        )
        # Allocate scales for fp8 shuffle kv cache with shuffle_kv_cache enabled
        if (
            rocm_aiter_ops.is_shuffle_kv_cache_enabled()
            and self.scale.numel() == 1
            and self.vllm_config.cache_config.cache_dtype.startswith("fp8")
        ):
            layers = get_layers_from_vllm_config(self.vllm_config, Attention)
            first_layer_name = [k for k in layers][0]
            kv_cache_shape = (
                self.vllm_config.compilation_config.static_forward_context[
                    first_layer_name
                ]
                .kv_cache[0]
                .shape
            )
            num_blocks = kv_cache_shape[1]
            self.scale = torch.ones(
                [num_blocks, self.num_heads_kv, self.block_size],
                dtype=torch.float32,
                device=self.device,
            )
        (
            num_decodes,
            num_extends,
            num_prefills,
            num_decode_tokens,
            num_extend_tokens,
            num_prefill_tokens,
        ) = split_ret

        query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu

        seq_lens = common_attn_metadata.seq_lens.cpu()

        query_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]

        decode_metadata = None
        if num_decodes > 0:
            decode_metadata = AiterFlashAttentionDecodeMetadata(
                max_query_len=query_lens_cpu[:num_decodes].max().item(),
                min_query_len=query_lens_cpu[:num_decodes].min().item(),
                max_seq_len=seq_lens[:num_decodes].max().item(),
                query_start_loc=common_attn_metadata.query_start_loc[: num_decodes + 1],
            )

        prefill_metadata = None
        if num_prefills > 0:
            query_lens_for_prefill = query_lens_cpu[num_decodes + num_extends :]
            query_start_loc_device = common_attn_metadata.query_start_loc[
                num_decodes + num_extends :
            ]
            prefill_metadata = AiterFlashAttentionPrefillMetadata(
                max_query_len=query_lens_for_prefill.max().item(),
                min_query_len=query_lens_for_prefill.min().item(),
                max_seq_len=seq_lens[num_decodes + num_extends :].max().item(),
                query_start_loc=query_start_loc_device - query_start_loc_device[0],
            )

        extend_metadata = None
        if num_extends > 0:
            num_extends_slice = slice(num_decodes, num_decodes + num_extends)
            query_lens_for_extend = query_lens_cpu[num_extends_slice]
            seq_lens_for_extend = seq_lens[num_extends_slice]
            computed_kv_lens = seq_lens_for_extend - query_lens_for_extend
            swa_metadata = None
            if self.aot_sliding_window is not None:
                swa_seqlen_for_extend = torch.minimum(
                    seq_lens_for_extend,
                    query_lens_for_extend + self.aot_sliding_window[0] + 1,
                )
                cu_seq_lens = torch.zeros(
                    num_extends + 1,
                    dtype=torch.int32,
                    device=seq_lens_for_extend.device,
                )
                torch.cumsum(
                    swa_seqlen_for_extend,
                    dim=0,
                    dtype=cu_seq_lens.dtype,
                    out=cu_seq_lens[1:],
                )
                token_to_seq = torch.arange(
                    0,
                    num_extends,
                    dtype=torch.int32,
                    device=seq_lens_for_extend.device,
                )
                token_to_seq = torch.repeat_interleave(
                    token_to_seq, swa_seqlen_for_extend
                )
                fetched_shape = cu_seq_lens[-1].item()
                # TODO(ganyi): Maybe reuse these 2 buffer from extend_workspace
                swa_workspace = torch.empty(
                    (2, fetched_shape, self.num_heads_kv, self.headdim),
                    dtype=self.vllm_config.model_config.dtype,
                    device=self.device,
                )

                seq_starts = seq_lens_for_extend - swa_seqlen_for_extend
                max_seqlen_k = swa_seqlen_for_extend.max().item()
                total_tokens = cu_seq_lens[-1].item()

                swa_metadata = AiterChunkSlidingWindowMetadata(
                    swa_seqlens=swa_seqlen_for_extend.to(
                        self.device, non_blocking=True
                    ),
                    swa_cu_seqlens=cu_seq_lens.to(self.device, non_blocking=True),
                    swa_seq_starts=seq_starts.to(self.device, non_blocking=True),
                    swa_token_to_batch=token_to_seq.to(self.device, non_blocking=True),
                    swa_max_seqlens=max_seqlen_k,
                    swa_total_tokens=total_tokens,
                    swa_workspace=swa_workspace,
                )

            # allocate the equal amount of workspace for
            # each chunk prefill request
            max_context_chunk = _CP_TOKENS_PER_ITER_ROCM // num_extends
            num_chunks = cdiv(computed_kv_lens.max().item(), max_context_chunk)

            chunk_starts = (
                torch.arange(num_chunks, dtype=torch.int32)
                .unsqueeze(1)
                .expand(-1, num_extends)
                * max_context_chunk
            )
            chunk_ends = torch.min(
                computed_kv_lens.unsqueeze(0), chunk_starts + max_context_chunk
            )
            chunk_seq_lens = (chunk_ends - chunk_starts).clamp(
                min=0
            )  # [num_chunks, num_extends]
            cu_seq_lens_cpu = torch.zeros(
                [num_chunks, num_extends + 1], dtype=torch.int32, pin_memory=True
            )
            torch.cumsum(
                chunk_seq_lens, dim=1, out=cu_seq_lens_cpu[:, 1:], dtype=torch.int32
            )
            max_cum_tokens = cu_seq_lens_cpu[:, -1].max().item()

            range_idx = torch.arange(max_cum_tokens, dtype=torch.int32)[None, None, :]
            idx_to_batch_tensor = range_idx == cu_seq_lens_cpu[:, 1:][:, :, None]
            idx_to_batch_tensor = idx_to_batch_tensor.sum(
                dim=1
            )  # [num_chunks, max_cum_tokens]
            token_to_batch_tensor = torch.cumsum(idx_to_batch_tensor, dim=1)

            chunk_context_metadata = AiterChunkContextMetadata(
                workspace=self.extend_workspace,
                cu_seq_lens_chunk=cu_seq_lens_cpu.to(self.device, non_blocking=True),
                chunk_starts=chunk_starts.to(self.device, non_blocking=True),
                seq_tot=chunk_seq_lens.sum(dim=1).tolist(),
                max_seq_lens=chunk_seq_lens.max(dim=1).values.tolist(),
                seq_lens=chunk_seq_lens,
                token_to_batch=token_to_batch_tensor.to(self.device, non_blocking=True),
                num_chunks=num_chunks,
                total_token_per_batch=cu_seq_lens_cpu[:, -1].tolist(),
                swa_metadata=swa_metadata,
            )

            query_start_loc_device = common_attn_metadata.query_start_loc[
                num_decodes : num_decodes + num_extends + 1
            ]
            seq_lens_device = common_attn_metadata.seq_lens[num_extends_slice]
            cu_seq_lens = torch.zeros(
                num_extends + 1, dtype=torch.int32, device=seq_lens_device.device
            )
            torch.cumsum(
                seq_lens_device, dim=0, dtype=cu_seq_lens.dtype, out=cu_seq_lens[1:]
            )
            extend_metadata = AiterFlashAttentionChunkPrefillMetadata(
                max_query_len=query_lens_for_extend.max().item(),
                min_query_len=query_lens_for_extend.min().item(),
                max_seq_len=seq_lens[num_extends_slice].max().item(),
                query_start_loc=query_start_loc_device - query_start_loc_device[0],
                chunk_context_metadata=chunk_context_metadata,
            )

        num_actual_kv_tokens = torch.sum(seq_lens).item()

        use_cascade = common_prefix_len > 0

        attn_metadata = AiterFlashAttentionMetadata(
            num_actual_tokens=common_attn_metadata.num_actual_tokens,
            num_actual_kv_tokens=num_actual_kv_tokens,
            max_query_len=common_attn_metadata.max_query_len,
            query_start_loc=common_attn_metadata.query_start_loc,
            max_seq_len=common_attn_metadata.max_seq_len,
            seq_lens=common_attn_metadata.seq_lens,
            block_table=common_attn_metadata.block_table_tensor,
            slot_mapping=common_attn_metadata.slot_mapping,
            num_decodes=num_decodes,
            num_decode_tokens=num_decode_tokens,
            num_prefills=num_prefills,
            num_prefill_tokens=num_prefill_tokens,
            num_extends=num_extends,
            num_extend_tokens=num_extend_tokens,
            decode_metadata=decode_metadata,
            prefill_metadata=prefill_metadata,
            extend_metadata=extend_metadata,
            use_cascade=use_cascade,
            common_prefix_len=common_prefix_len,
            total_tokens=self.total_tokens,
            k_scale=self.scale,
            v_scale=self.scale,
        )
        return attn_metadata

    def build_for_drafting(
        self,
        common_attn_metadata: CommonAttentionMetadata,
        draft_index: int,
    ) -> AiterFlashAttentionMetadata:
        """
        Build attention metadata for draft model without CPU-GPU sync.

        During EAGLE drafting all requests are uniform decodes, so we can
        skip split_decodes_prefills_and_extends() and avoid all .cpu() /
        .item() calls that would otherwise break CUDA graph capture.
        """
        num_reqs = common_attn_metadata.num_reqs
        num_tokens = common_attn_metadata.num_actual_tokens

        decode_metadata = AiterFlashAttentionDecodeMetadata(
            max_query_len=common_attn_metadata.max_query_len,
            min_query_len=common_attn_metadata.max_query_len,  # uniform batch
            max_seq_len=common_attn_metadata.max_seq_len,
            query_start_loc=common_attn_metadata.query_start_loc,
        )

        return AiterFlashAttentionMetadata(
            num_actual_tokens=num_tokens,
            num_actual_kv_tokens=0,  # not used in unified_attention path
            max_query_len=common_attn_metadata.max_query_len,
            query_start_loc=common_attn_metadata.query_start_loc,
            max_seq_len=common_attn_metadata.max_seq_len,
            seq_lens=common_attn_metadata.seq_lens,
            block_table=common_attn_metadata.block_table_tensor,
            slot_mapping=common_attn_metadata.slot_mapping,
            num_decodes=num_reqs,
            num_decode_tokens=num_tokens,
            num_prefills=0,
            num_prefill_tokens=0,
            num_extends=0,
            num_extend_tokens=0,
            decode_metadata=decode_metadata,
            prefill_metadata=None,
            extend_metadata=None,
            use_cascade=False,
            common_prefix_len=0,
            total_tokens=self.total_tokens,
            k_scale=self.scale,
            v_scale=self.scale,
        )

    def use_cascade_attention(self, *args, **kwargs) -> bool:
        return False

build_for_drafting

build_for_drafting(
    common_attn_metadata: CommonAttentionMetadata,
    draft_index: int,
) -> AiterFlashAttentionMetadata

Build attention metadata for draft model without CPU-GPU sync.

During EAGLE drafting all requests are uniform decodes, so we can skip split_decodes_prefills_and_extends() and avoid all .cpu() / .item() calls that would otherwise break CUDA graph capture.

Source code in vllm/v1/attention/backends/rocm_aiter_fa.py
def build_for_drafting(
    self,
    common_attn_metadata: CommonAttentionMetadata,
    draft_index: int,
) -> AiterFlashAttentionMetadata:
    """
    Build attention metadata for draft model without CPU-GPU sync.

    During EAGLE drafting all requests are uniform decodes, so we can
    skip split_decodes_prefills_and_extends() and avoid all .cpu() /
    .item() calls that would otherwise break CUDA graph capture.
    """
    num_reqs = common_attn_metadata.num_reqs
    num_tokens = common_attn_metadata.num_actual_tokens

    decode_metadata = AiterFlashAttentionDecodeMetadata(
        max_query_len=common_attn_metadata.max_query_len,
        min_query_len=common_attn_metadata.max_query_len,  # uniform batch
        max_seq_len=common_attn_metadata.max_seq_len,
        query_start_loc=common_attn_metadata.query_start_loc,
    )

    return AiterFlashAttentionMetadata(
        num_actual_tokens=num_tokens,
        num_actual_kv_tokens=0,  # not used in unified_attention path
        max_query_len=common_attn_metadata.max_query_len,
        query_start_loc=common_attn_metadata.query_start_loc,
        max_seq_len=common_attn_metadata.max_seq_len,
        seq_lens=common_attn_metadata.seq_lens,
        block_table=common_attn_metadata.block_table_tensor,
        slot_mapping=common_attn_metadata.slot_mapping,
        num_decodes=num_reqs,
        num_decode_tokens=num_tokens,
        num_prefills=0,
        num_prefill_tokens=0,
        num_extends=0,
        num_extend_tokens=0,
        decode_metadata=decode_metadata,
        prefill_metadata=None,
        extend_metadata=None,
        use_cascade=False,
        common_prefix_len=0,
        total_tokens=self.total_tokens,
        k_scale=self.scale,
        v_scale=self.scale,
    )