Skip to content

Draft Models

The following code configures vLLM in an offline mode to use speculative decoding with a draft model, speculating 5 tokens at a time.

from vllm import LLM, SamplingParams

prompts = ["The future of AI is"]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(
    model="Qwen/Qwen3-8B",
    tensor_parallel_size=1,
    speculative_config={
        "model": "Qwen/Qwen3-0.6B",
        "num_speculative_tokens": 5,
        "method": "draft_model",
    },
)
outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

To perform the equivalent launch in online mode, use the following server-side code:

vllm serve Qwen/Qwen3-4B-Thinking-2507 \
    --host 0.0.0.0 \
    --port 8000 \
    --seed 42 \
    -tp 1 \
    --max_model_len 2048 \
    --gpu_memory_utilization 0.8 \
    --speculative_config '{"model": "Qwen/Qwen3-0.6B", "num_speculative_tokens": 5, "method": "draft_model"}'

The code used to request as completions as a client remains unchanged:

Code
from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    # defaults to os.environ.get("OPENAI_API_KEY")
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

# Completion API
stream = False
completion = client.completions.create(
    model=model,
    prompt="The future of AI is",
    echo=False,
    n=1,
    stream=stream,
)

print("Completion results:")
if stream:
    for c in completion:
        print(c)
else:
    print(completion)

Warning

Note: Please use --speculative_config to set all configurations related to speculative decoding. The previous method of specifying the model through --speculative_model and adding related parameters (e.g., --num_speculative_tokens) separately has been deprecated.